1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

In this thesis, we present algorithms for self-aggregation and self-reconfiguration of modular robots in the pivoting cube model. First, we provide generic algorithms for aggregation of robots following integrator dynamics in arbitrary dimensional configuration spaces. We describe solutions to the problem under different assumptions on the capabilities of the robots, and the configuration space in which they travel. We also detail control strategies in cases where the robots are restricted to move on lower dimensional subspaces of the configuration space (such as being restricted to move on a 2D lattice). Second, we consider the problem of finding a distributed strategy for the aggregation of multiple modular robots into one connected structure. Our algorithm is designed for the pivoting cube model, a generalized model of motion for modular robots that has been effectively realized in hardware in the 3D M-Blocks. We use the intensity from a stimulus source as a input to a decentralized control algorithm that uses gradient information to drive the robots together. We give provable guarantees on convergence, and discuss experiments carried out in simulation and with a hardware platform of six 3D M-Blocks modules.

Pertenece a

DSpace at MIT  

Autor(es)

Claici, Sebastian - 

Id.: 69702362

Idioma: eng  - 

Versión: 1.0

Estado: Final

Tipo:  66 pages - 

Palabras claveElectrical Engineering and Computer Science. - 

Tipo de recurso: Thesis  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.

Formatos:  66 pages - 

Requerimientos técnicos:  Browser: Any - 

Fecha de contribución: 12-mar-2017

Contacto:

Localización:
* 973720716

Otros recursos que te pueden interesar

  1. Emotion recognition using wireless signals This thesis demonstrates a new technology that can infer a person's emotions from RF signals reflect...
  2. Private sequential search and optimization We propose and analyze two models to study an intrinsic trade-off between privacy and query complexi...
  3. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment with rebalancing On-demand ride-sharing systems with autonomous vehicles have the potential to enhance the efficiency...
  4. Faster algorithms for matrix scaling and balancing via convex optimization In this thesis, we study matrix scaling and balancing, which are fundamental problems in scientific ...
  5. Machine-learning models for predicting drug approvals and clinical-phase transitions We apply machine-learning techniques to predict drug approvals and phase transitions using drug-deve...

Otros recursos de la mismacolección

  1. Emotion recognition using wireless signals This thesis demonstrates a new technology that can infer a person's emotions from RF signals reflect...
  2. Private sequential search and optimization We propose and analyze two models to study an intrinsic trade-off between privacy and query complexi...
  3. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment with rebalancing On-demand ride-sharing systems with autonomous vehicles have the potential to enhance the efficiency...
  4. Faster algorithms for matrix scaling and balancing via convex optimization In this thesis, we study matrix scaling and balancing, which are fundamental problems in scientific ...
  5. Machine-learning models for predicting drug approvals and clinical-phase transitions We apply machine-learning techniques to predict drug approvals and phase transitions using drug-deve...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.