1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then outlined.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Karabatsos, George -  Leisen, Fabrizio - 

Id.: 71390281

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveApproximate Bayesian computation - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 The author, under a Creative Commons Attribution License

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7516

Fecha de contribución: 10-jun-2018

Contacto:

Localización:
* Statist. Surv. 12 (2018), 66-104
* doi:10.1214/18-SS120

Otros recursos del mismo autor(es)

  1. Modelling and Computation Using NCoRM Mixtures for Density Regression Normalized compound random measures are flexible nonparametric priors for related distributions. We ...
  2. Bayesian nonparametric estimation of survival functions with multiple-samples information In many real problems, dependence structures more general than exchangeability are required. For ins...
  3. Limiting behaviour of the stationary search cost distribution driven by a generalized gamma process Consider a list of labeled objects that are organized in a heap. At each time, object $j$ is selecte...
  4. Bayesian Model Selection for Beta Autoregressive Processes We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of pa...
  5. Conditionally identically distributed species sampling sequences

Otros recursos de la mismacolección

  1. Variable selection methods for model-based clustering Model-based clustering is a popular approach for clustering multivariate data which has seen applica...
  2. A design-sensitive approach to fitting regression models with complex survey data Fitting complex survey data to regression equations is explored under a design-sensitive model-based...
  3. Basic models and questions in statistical network analysis Extracting information from large graphs has become an important statistical problem since network d...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.