1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


This paper presents a computer model for the assessment of the similarity between two sound patterns, to identify phoneme mispronunciations circumscribed by dyslalic disorders in early school-age children (6-10 year olds). From a linguistic standpoint, it is the phonetic tier that is mainly engaged in dyslalia. Unlike other speech disorders, which involve meaning-coding and decoding mechanisms (semantics), dyslalia lends itself more easily to mathematical analysis in the screening stage. The method is based on the analysis of the sound waves and on the quantification of the information carried by every single sound pattern, by calculating its entropy. It is an empirical methodology that provides results that may be analyzed. An experimental study was conducted according to the model and method presented on a sample of 30 subjects. The results are assessed and conclusions are issued. The representation using an isometric diagram accommodates a better interpretation of the results.

Pertenece a

Applied Medical Informatics  


MAHMUT, Emilian Erman -  Politehnica University of Timisoara, SRIM -  DELLA VENTURA, Michele -  Music Academy “Studio Musica”, Treviso  -  Italy -  STOICU -  TIVADAR, Vasile - 

Id.: 71498571

Idioma: eng  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveEntropy -  Phonetic similarity -  Dyslalia -  Soundwave -  Markov process - 

Tipo de recurso: info:eu-repo/semantics/article  -  info:eu-repo/semantics/publishedVersion  -  Peer-reviewed Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright (c) 2018 Applied Medical Informatics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] Applied Medical Informatics; Vol 40, No 1-2 (2018); 15-23
[IsBasedOn] 2067-7855
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/view/625/pdf_63
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/downloadSuppFile/625/255
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/downloadSuppFile/625/276
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/downloadSuppFile/625/277

Fecha de contribución: 01-jul-2018



Otros recursos de la mismacolección

  1. Challenges in Dental Imaging – Edge and Texture Analysis in Caries Detection One of the most frequent diseases all over the world is represented by dental caries, hence it is of...
  2. Content-Based Image Retrieval: A Comprehensive User Interactive Simulation Tool for Endoscopic Image Databases Until few years ago, radiological methods were widely used for the examination and investigation of ...
  3. Optimization of Blood Donation Activity Supporting a Smart City The reported research aimed to decrease the distance between a person and the healthcare system rega...
  4. Extracting and Structuring Drug Information to Improve e-Prescription and Streamline Medical Treatment Currently, physicians are using the patient electronic health record (EHR) to support their practice...
  5. Unsupervised Multimodal Magnetic Resonance Images Segmentation and Multiple Sclerosis Lesions Extraction based on Edge and Texture Features Segmentation of Multiple Sclerosis (MS) lesions is a crucial part of MS diagnosis and therapy. Segme...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.