1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

For a locally smooth statistical model, we investigate kernel U-quantiles estimators. Under suitable assumptions, we establish a strong Bahadur representation theorem, an invariance principle, and the asymptotic normality for randomly indexed sequences of observations.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Ralescu, Stefan - 

Id.: 55207167

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveBahadur representation - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 664-671
* doi:10.1214/12-EJS687

Otros recursos del mismo autor(es)

  1. Limit theorems for random central order statistics
  2. Cramer Type Large Deviations for Generalized Rank Statistics A Cramer type large deviation theorem is proved under alternatives as well as under hypothesis for t...
  3. A Class of Nonlinear Admissible Estimators in the One-Parameter Exponential Family We are concerned with the admissibility of nonlinear estimators of the form $(aX + b)/(cX + d)$ in t...

Otros recursos de la mismacolección

  1. SiAM: A hybrid of single index models and additive models While popular, single index models and additive models have potential limitations, a fact that leads...
  2. Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals Estimation of parameters of a diffusion based on discrete time observations poses a difficult proble...
  3. Adaptive variable selection in nonparametric sparse additive models We consider the problem of recovery of an unknown multivariate signal $f$ observed in a $d$-dimensio...
  4. Local optimization-based statistical inference This paper introduces a local optimization-based approach to test statistical hypotheses and to cons...
  5. Optimal exponential bounds for aggregation of estimators for the Kullback-Leibler loss We study the problem of aggregation of estimators with respect to the Kullback-Leibler divergence fo...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.