1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Purpose: We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). Methods: The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. Results: The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 highgrade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48%, 6% and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. Conclusions: This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.

Pertenece a

Faculty of Technology ePrints Service  

Autor(es)

Soltaninejad, Mohammadreza -  Yang, Guang -  Lambrou, Tryphon -  Allinson, Nigel -  Jones, Timothy -  Barrick, Thomas -  Howe, Franklyn -  Ye, Xujiong - 

Id.: 69522335

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Article  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: cc_by4

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://eprints.lincoln.ac.uk/25561/
[References] http://link.springer.com/article/10.1007/s11548-016-1483-3
[References] 10.1007/s11548-016-1483-3

Fecha de contribución: 07-ene-2017

Contacto:

Localización:
* Soltaninejad, Mohammadreza and Yang, Guang and Lambrou, Tryphon and Allinson, Nigel and Jones, Timothy and Barrick, Thomas and Howe, Franklyn and Ye, Xujiong (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. International Journal of Computer Assisted Radiology and Surgery . ISSN 1861-6410

Otros recursos de la mismacolección

  1. Genetic rescue of absence seizures Crossbreeding GABAAR δ subunit knockout mice with stargazer mice removes the absence seizure phenoty...
  2. Yearning to belong: finding a "home" for the right to academic freedom in the UN human rights covenants Academic freedom is generally considered a human right, both nationally and internationally. However...
  3. Self-disclosure with dogs: dog owners’ and non-dog owners’ willingness to disclose emotional topics Many owners talk to their pets about a wide range of issues, but there is very little research that ...
  4. Changing nature and emerging patterns of domestic violence in global contexts: dowry abuse and the transnational abandonment of wives in India This paper argues for the need to understand dowry-related abuse through a lens that focuses not onl...
  5. The Better Insulated House Programme The Better Insulated House Programme was conceived in 1973 in awareness of the imminent world shorta...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.