1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Purpose: We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). Methods: The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. Results: The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 highgrade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48%, 6% and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. Conclusions: This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.

Pertenece a

Faculty of Technology ePrints Service  

Autor(es)

Soltaninejad, Mohammadreza -  Yang, Guang -  Lambrou, Tryphon -  Allinson, Nigel -  Jones, Timothy -  Barrick, Thomas -  Howe, Franklyn -  Ye, Xujiong - 

Id.: 69522335

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Article  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: cc_by4

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://eprints.lincoln.ac.uk/25561/
[References] http://link.springer.com/article/10.1007/s11548-016-1483-3
[References] 10.1007/s11548-016-1483-3

Fecha de contribución: 07-ene-2017

Contacto:

Localización:
* Soltaninejad, Mohammadreza and Yang, Guang and Lambrou, Tryphon and Allinson, Nigel and Jones, Timothy and Barrick, Thomas and Howe, Franklyn and Ye, Xujiong (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. International Journal of Computer Assisted Radiology and Surgery . ISSN 1861-6410

Otros recursos del mismo autor(es)

  1. Microwave impedance microscopy of nanostructured carbon Microwave impedance microscopy (MIM) is a scanning probe technique that measures local changes in ti...
  2. The impacts of short-term temporal factors on the magnitude and direction of marine protected area effects detected in reef fish monitoring Marine protected areas (MPA) and in particular no-take marine reserves have been identified as impor...
  3. Depth classification of underwater targets based on complex acoustic intensity of normal modes In order to solve the problem of depth classification of the underwater target in a very low frequen...
  4. Demonstration of Low Voltage and Functionally Complete Logic Operations Using Body-Biased Complementary and Ultra-Thin ALN Piezoelectric Mechanical Switches This paper reports, for the first time, on the demonstration of low voltage and functionally complet...
  5. Body-Biased Complementary Logic Implemented Using AIN Piezoelectric MEMS Switches This paper reports on the first implementation of low voltage complementary logic (< 1.5 V) by using...

Otros recursos de la mismacolección

No existen otros recursos

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.