Sunday, April 20, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Blow-up in some ordinary and partial differential equations with time-delay

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

Pertenece a: E-PrintsUCM  

Descripción: Blow-up phenomena are analyzed for both the delay-differential equation (DDE) u'(t) = B'(t)u(t - tau), and the associated parabolic PDE (PDDE) partial derivative(t)u=Delta u+B'(t)u(t-tau,x), where B : [0, tau] -> R is a positive L(1) function which behaves like 1/vertical bar t - t*vertical bar(alpha), for some alpha is an element of (0, 1) and t* is an element of (0,tau). Here B' represents its distributional derivative. For initial functions satisfying u(t* - tau) > 0, blow up takes place as t NE arrow t* and the behavior of the solution near t* is given by u(t) similar or equal to B(t)u(t - tau), and a similar result holds for the PDDE. The extension to some nonlinear equations is also studied: we use the Alekseev's formula (case of nonlinear (DDE)) and comparison arguments (case of nonlinear (PDDE)). The existence of solutions in some generalized sense, beyond t = t* is also addressed. This results is connected with a similar question raised by A. Friedman and J. B. McLeod in 1985 for the case of semilinear parabolic equations.

Autor(es): Díaz Díaz, Jesús Ildefonso -  Casal, Alfonso C. -  Vegas Montaner, José Manuel - 

Id.: 55287214

Idioma: spa  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveEcuaciones diferenciales - 

Tipo de recurso: Artículo  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: info:eu-repo/semantics/embargoedAccess

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://www.dynamicpublishers.com/DSA/dsa18pdf/03-DSA-CY-3-Casal.pdf
[References] http://eprints.ucm.es/15136/

Fecha de contribución: 09-may-2012

Contacto:

Localización:


Otros recursos del mismo autor(es)

  1. Ecuaciones diferenciales. Vol. II: Ecuaciones no lineales
  2. Cálculo diferencial de varias variables
  3. En la muerte de Philippe Benilan: gran matemático y colaborador de la Matemática española
  4. Estimates on the support of the solutions of some non-linear elliptic and parabolic problems We obtain existence and uniqueness of solutions with compact support for some nonlinear elliptic and...
  5. Remarks on the Monge-Ampère equation: some free boundary problems in geometry This paper deals with several qualitative properties of solutions of some stationary and parabolic e...

Otros recursos de la misma colección

  1. A simple numerical-method for the determination of relativistic one-dimensional band structures A discretized form of the one-dimensional Dirac equation is solved to study relativistic band struct...
  2. Characterization of semiinsulating GaAs - Cr by scanning electron acoustic microscopy
  3. Application of scanning electron acoustic microscopy to the characterization of n-type and semiinsulating GaAs A series of GaAs wafers with different doping levels and electrical resistivity has been used to inv...
  4. Level shift under the influence of relativistic point interaction potentials Level shift of Dirac particles under the influence of point interaction potentials has been determin...
  5. UV/IR mixing and the Goldstone theorem in noncommutative field theory Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for complex ...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso