1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


We consider the previously introduced notion of the $K$ -quadrilateral cosine, which is the cosine under parallel transport in model $K$ -space, and which is denoted by $\operatorname{cosq}_{K}$ . In $K$ -space, $\vert \operatorname{cosq}_{K}\vert \leq 1$ is equivalent to the Cauchy–Schwarz inequality for tangent vectors under parallel transport. Our principal result states that a geodesically connected metric space (of diameter not greater than $\pi /(2\sqrt{K})$ if $K\gt 0$ ) is an $\Re_{K}$ domain (otherwise known as a $\operatorname{CAT}(K)$ space) if and only if always $\operatorname{cosq}_{K}\leq 1$ or always $\operatorname{cosq}_{K}\geq -1$ . (We prove that in such spaces always $\operatorname{cosq}_{K}\leq 1$ is equivalent to always $\operatorname{cosq}_{K}\geq -1$ .) The case of $K=0$ was treated in our previous paper on quasilinearization. We show that in our theorem the diameter hypothesis for positive $K$ is sharp, and we prove an extremal theorem—isometry with a section of $K$ -plane—when $\vert \operatorname{cosq}_{K}\vert $ attains an upper bound of $1$ , the case of equality in the metric Cauchy–Schwarz inequality. We derive from our main theorem and our previous result for $K=0$ a complete solution of Gromov’s curvature problem in the context of Aleksandrov spaces of curvature bounded above.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Berg, I. D. -  Nikolaev, Igor G. - 

Id.: 71305349

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras clave53C20 - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 The University of Michigan

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0026-2285
[References] 1945-2365

Fecha de contribución: 13-may-2018


* Michigan Math. J. 67, iss. 2 (2018), 289-332
* doi:10.1307/mmj/1519095621

Otros recursos que te pueden interesar

  1. Injectivity domain of ellipsoid of revolution. The oblate case. Study of the convexity of the injectivity domains on an oblate ellipsoid.
  2. Conjugate and cut loci of a two-sphere of revolution with application to optimal control The objective of this article is to present a sharp result to determine when the cut locus for a cla...
  3. One-parameter family of Clairaut-Liouville metrics Riemannian metrics with singularities are considered on the $2$-sphere of revolution. The analysis o...
  4. On some Riemannian aspects of two and three-body controlled problems The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic af...
  5. Extrinsic radius pinching in space forms of nonnegative sectional curvature 16 pages, a paraitre dans Mathematische Zeitschrift

Otros recursos de la mismacolección

  1. On the $\operatorname{Pin}(2)$ -Equivariant Monopole Floer Homology of Plumbed 3-Manifolds We compute the $\operatorname{Pin}(2)$ -equivariant monopole Floer homology for the class of plumbed...
  2. Legendrian Lens Space Surgeries We show that every tight contact structure on any of the lens spaces $L(ns^{2}-s+1,s^{2})$ with $n\g...
  3. Diophantine Approximation Constants for Varieties over Function Fields By analogy with the program of McKinnon and Roth [10], we define and study approximation constants f...
  4. Givental-Type Reconstruction at a Nonsemisimple Point We consider the orbifold curve that is a quotient of an elliptic curve $\mathcal{E}$ by a cyclic gro...
  5. Multiple Lerch Zeta Functions and an Idea of Ramanujan In this article, we derive meromorphic continuation of multiple Lerch zeta functions by generalizing...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.