1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Let $\mathcal{K}$ be a family of structures, closed under isomorphism, in a fixed computable language. We consider effective lists of structures from $\mathcal{K}$ such that every structure in $\mathcal{K}$ is isomorphic to exactly one structure on the list. Such a list is called a computable classification of $\mathcal{K}$ , up to isomorphism. Using the technique of Friedberg enumeration, we show that there is a computable classification of the family of computable algebraic fields and that with a $\mathbf{0'}$ -oracle, we can obtain similar classifications of the families of computable equivalence structures and of computable finite-branching trees. However, there is no computable classification of the latter, nor of the family of computable torsion-free abelian groups of rank $1$ , even though these families are both closely allied with computable algebraic fields.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Lange, Karen -  Miller, Russell -  Steiner, Rebecca M. - 

Id.: 70828091

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveFriedberg enumeration - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 University of Notre Dame

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0029-4527
[References] 1939-0726

Fecha de contribución: 17-mar-2018

Contacto:

Localización:
* Notre Dame J. Formal Logic 59, no. 1 (2018), 35-59
* doi:10.1215/00294527-2017-0015

Otros recursos de la mismacolección

  1. Actualism, Serious Actualism, and Quantified Modal Logic This article studies seriously actualistic quantified modal logics. A key component of the language ...
  2. Ostrowski Numeration Systems, Addition, and Finite Automata We present an elementary three-pass algorithm for computing addition in Ostrowski numeration systems...
  3. Nonreduction of Relations in the Gromov Space to Polish Actions We show that in the Gromov space of isometry classes of pointed proper metric spaces, the equivalenc...
  4. A Problem in Pythagorean Arithmetic Problem 2 at the 56th International Mathematical Olympiad (2015) asks for all triples $(a,b,c)$ of p...
  5. Two More Characterizations of K-Triviality We give two new characterizations of $K$ -triviality. We show that if for all $Y$ such that $\Omega$...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.