Saturday, December 20, 2014



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía

Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

Pertenece a: Faculty of Technology ePrints Service  

Descripción: A Bayesian SOM (BSOM) [8], is proposed and applied to the unsupervised learning of Gaussian mixture distributions and its performance is compared with the expectation-maximisation (EM) algorithm. The BSOM is found to yield as good results as the well-known EM algorithm but with much fewer iterations and, more importantly it can be used as an on-line training method. The neighbourhood function and distance measures of the traditional SOM [3] are replaced by the neuron's on-line estimated posterior probabilities, which can be interpreted as a Bayesian inference of the neuron's opportunity to share in the winning response and so to adapt to the input pattern. Such posteriors starting from uniform priors are gradually sharpened when more and more data samples become available and so improve the estimation of model parameters. Each neuron then converges to one component of the mixture. Experimental results are compared with those of the EM algorithm.

Autor(es): Yin, Hujun -  Allinson, Nigel - 

Id.: 55198554

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References]

Fecha de contribución: 13-oct-2012


* Yin, Hujun and Allinson, Nigel (1997) Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures. In: Workshop on Self-Organising Maps (WSOM'97), 4-6 June 1997, Helsinki, Finland.

Otros recursos del mismo autor(es)

  1. Face database .
  2. Characterizing virtual Eigensignatures for general purpose face recognition .
  3. Sheffield building image dataset Jing Li and Nigel M. Allinson, Dimensionality Reduction-Based Building Recognition, in Proceedings o...
  4. Brain tumour grading in different MRI protocols using SVM on statistical features In this paper a feasibility study of brain MRI dataset classification, using ROIs which have been se...
  5. A hybrid method for haemorrhage segmentation in trauma brain CT Traumatic brain injuries are important causes of disability and death. Physicians use CT or MRI imag...

Otros recursos de la misma colección

  1. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques In humans and obligatory social animals, individuals with weak social ties experience negative healt...
  2. Care concept in medical and nursing students' descriptions - Philosophical approach and implications for medical education Introduction. Care is seen as something that is peculiar to the medical sciences but its meaning and...
  3. Performing celebrity motherhood on Twitter: courting homage and (momentary) disaster – the case of Peaches Geldof .
  4. Highly efficient synthesis of DNA-binding polyamides using a convergent fragment-based approach Two advances in the synthesis of hairpin pyrrole-imidazole polyamides (PAs) are described. First, th...
  5. Relationships between mental toughness and psychological wellbeing in undergraduate students This study examined relationships between mental toughness (MT) and psychological wellbeing (PWB) in...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.

Busque un recurso