Wednesday, April 16, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

Pertenece a: Faculty of Technology ePrints Service  

Descripción: A Bayesian SOM (BSOM) [8], is proposed and applied to the unsupervised learning of Gaussian mixture distributions and its performance is compared with the expectation-maximisation (EM) algorithm. The BSOM is found to yield as good results as the well-known EM algorithm but with much fewer iterations and, more importantly it can be used as an on-line training method. The neighbourhood function and distance measures of the traditional SOM [3] are replaced by the neuron's on-line estimated posterior probabilities, which can be interpreted as a Bayesian inference of the neuron's opportunity to share in the winning response and so to adapt to the input pattern. Such posteriors starting from uniform priors are gradually sharpened when more and more data samples become available and so improve the estimation of model parameters. Each neuron then converges to one component of the mixture. Experimental results are compared with those of the EM algorithm.

Autor(es): Yin, Hujun -  Allinson, Nigel - 

Id.: 55198554

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://users.ics.tkk.fi/wsom97/program.html
[References] http://eprints.lincoln.ac.uk/5020/

Fecha de contribución: 13-oct-2012

Contacto:

Localización:
* Yin, Hujun and Allinson, Nigel (1997) Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures. In: Workshop on Self-Organising Maps (WSOM'97), 4-6 June 1997, Helsinki, Finland.


Otros recursos del mismo autor(es)

  1. Using a large area CMOS APS for direct chemiluminescence detection in western blotting electrophoresis Western blotting electrophoretic sequencing is an analytical technique widely used in Functional Pro...
  2. Radiation hardness of a large area CMOS active pixel sensor for bio-medical application A wafer scale CMOS Active Pixel Sensor has been designed employing design techniques of transistor e...
  3. Relevance feedback in content-based image retrieval: a survey In content-based image retrieval, relevance feedback is an interactive process, which builds a bridg...
  4. Relating vanishing points to catadioptric camera calibration This paper presents the analysis and derivation of the geometric relation between vanishing points a...
  5. Geometric properties of catadioptric projected lines applied to calibration of omnidirectional cameras .

Otros recursos de la misma colección

  1. Building heating consumptions under present and future climate scenarios .
  2. Measuring for improvement This is the fourth in a series of articles about the science of quality improvement. We examine what...
  3. Reducing wasteful innovation .
  4. Low-cost embedded system for relative localization in robotic swarms In this paper, we present a small, light-weight, low-cost, fast and reliable system designed to sati...
  5. Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles A leader-follower formation driving algorithm developed for control of heterogeneous groups of unman...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso