Tuesday, March 31, 2015

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso

Detalles del recurso

Pertenece a: Faculty of Technology ePrints Service  

Descripción: A Bayesian SOM (BSOM) [8], is proposed and applied to the unsupervised learning of Gaussian mixture distributions and its performance is compared with the expectation-maximisation (EM) algorithm. The BSOM is found to yield as good results as the well-known EM algorithm but with much fewer iterations and, more importantly it can be used as an on-line training method. The neighbourhood function and distance measures of the traditional SOM [3] are replaced by the neuron's on-line estimated posterior probabilities, which can be interpreted as a Bayesian inference of the neuron's opportunity to share in the winning response and so to adapt to the input pattern. Such posteriors starting from uniform priors are gradually sharpened when more and more data samples become available and so improve the estimation of model parameters. Each neuron then converges to one component of the mixture. Experimental results are compared with those of the EM algorithm.

Autor(es): Yin, Hujun -  Allinson, Nigel - 

Id.: 55198554

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://users.ics.tkk.fi/wsom97/program.html
[References] http://eprints.lincoln.ac.uk/5020/

Fecha de contribución: 13-oct-2012

Contacto:

Localización:
* Yin, Hujun and Allinson, Nigel (1997) Comparison of a Bayesian SOM with the EM algorithm for Gaussian mixtures. In: Workshop on Self-Organising Maps (WSOM'97), 4-6 June 1997, Helsinki, Finland.


Otros recursos del mismo autor(es)

  1. An image analysis approach to MRI brain tumour grading n/a
  2. A J-linkage based approach for vanishing direction estimation in catadioptric images This paper presents a new method for the extraction and clustering of Catadioptric Line Images (CLIs...
  3. Face database .
  4. Characterizing virtual Eigensignatures for general purpose face recognition .
  5. Sheffield building image dataset Jing Li and Nigel M. Allinson, Dimensionality Reduction-Based Building Recognition, in Proceedings o...

Otros recursos de la misma colección

  1. Touching moments: sociological phenomenology & the haptic in the lived experience of Motor Neurone Disease Currently, there is a research lacuna with regard to phenomenological research into the lived-experi...
  2. Towards an understanding of career progression for female professors of nursing: a small scale study The aim of this study was to generate knowledge of career progression for women professors of nursin...
  3. p-automorphisms of finite p-groups .
  4. Assessing food preferences in dogs and cats: a review of the current methods Food is a major aspect of pet care; therefore, ensuring that pet foods are not only healthful but at...
  5. Experimental study of characteristics of bimetallic Pt–Fe nano-particle fuel cell electrocatalyst The characteristics of 1.5 wt% Platinum (Pt) loading on Fe incorporated Y zeolite (Pt–Fe/Y zeolite) ...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso