1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

The QR-method is a method for the solution of linear system of equations. The matrix R is upper triangular and Q is a unitary matrix. In equation solving Q is not always computed explicitly. The matrix R can be obtained by applying a sequence of unitary transformations to the matrix defining the system of equations. Householder's method or Given's method can be used to determine unitary transformation matrices. This paper describes a concurrent algorithm and corresponding array for computing the triangular matrix R by Householder transformations. Particular attention is given to issues such as broadcasting and pipelining.

Pertenece a

Caltech Authors  

Autor(es)

Johnsson, Lennart - 

Id.: 55237010

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Report or Paper  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechAUTHORS:20120423-165211870
[References] http://authors.library.caltech.edu/30263/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* Johnsson, Lennart (1982) A Computational Array for the QR-Method. California Institute of Technology , Pasadena, CA. (Unpublished) http://resolver.caltech.edu/CaltechAUTHORS:20120423-165211870

Otros recursos del mismo autor(es)

  1. A mathematical approach to modelling the flow of data and control in computational networks This paper proposes a mathematical formalism for the synthesis and qualitative analysis of computati...
  2. VLSI Architecture and Design Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or le...
  3. Computational Arrays for Band Matrix Equations No Abstract.
  4. Gaussian Elimination on Sparse Matricies and Concurrency No Abstract.
  5. Residue Arithmetic and VLSI In the residue number system arithmetic is carried out on each digit individually. There is no carry...

Otros recursos de la mismacolección

  1. Context Embedding Networks Low dimensional embeddings that capture the main variations of interest in collections of data are i...
  2. Approximate Expected Utility Rationalization We propose a new measure of deviations from expected utility, given data on economic choices under r...
  3. From Dynamical Localization to Bunching in interacting Floquet Systems We show that a quantum many-body system may be controlled by means of Floquet engineering, i.e., the...
  4. High-fidelity control and entanglement of Rydberg atom qubits Individual neutral atoms excited to Rydberg states are a promising platform for quantum simulation a...
  5. Locality of Edge States and Entanglement Spectrum from Strong Subadditivity We consider two-dimensional states of matter satisfying an uniform area law for entanglement. We sho...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.