1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Consider an experiment in which $p$ independent populations $\pi_{i}$ with corresponding unknown means $\theta_{i}$ are available, and suppose that for every $1\leq i\leq p$, we can obtain a sample $X_{i1},\ldots,X_{in}$ from $\pi_{i}$. In this context, researchers are sometimes interested in selecting the populations that yield the largest sample means as a result of the experiment, and then estimate the corresponding population means $\theta_{i}$. In this paper, we present a frequentist approach to the problem and discuss how to construct simultaneous confidence intervals for the means of the $k$ selected populations, assuming that the populations $\pi_{i}$ are independent and normally distributed with a common variance $\sigma^{2}$. The method, based on the minimization of the coverage probability, obtains confidence intervals that attain the nominal coverage probability for any $p$ and $k$, taking into account the selection procedure.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Fuentes, Claudio -  Casella, George -  Wells, Martin T. - 

Id.: 70835413

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveConfidence intervals - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 The Institute of Mathematical Statistics and the Bernoulli Society

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 16-ene-2018

Contacto:

Localización:
* Electron. J. Statist. 12, no. 1 (2018), 58-79
* doi:10.1214/17-EJS1374

Otros recursos del mismo autor(es)

  1. AIC, Cp and estimators of loss for elliptically symmetric distributions In this article, we develop a modern perspective on Akaike's information criterion and Mallows's Cp ...
  2. A History of Markov Chain Monte Carlo--Subjective Recollections from Incomplete Data-- In this note we attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from...
  3. Introducing Monte Carlo Methods with R Solutions to Odd-Numbered Exercises 87 pages, 11 figures
  4. Optimal Confidence Sets, Bioequivalence, and the Limaçon of Pascal We begin with a decision-theoretic investigation into confidence sets that minimize expected volume ...
  5. Minimax Estimation of a Normal Mean Vector for Arbitrary Quadratic Loss and Unknown Covariance Matrix Let X be an observation from a p-variate normal distribution (p ≧ 3) with mean vector θ and unknown ...

Otros recursos de la mismacolección

  1. Locally stationary functional time series The literature on time series of functional data has focused on processes of which the probabilistic...
  2. On misspecifications in regularity and properties of estimators The problem of parameter estimation by the continuous time observations of a deterministic signal in...
  3. Change detection via affine and quadratic detectors The goal of the paper is to develop a specific application of the convex optimization based hypothes...
  4. Exchangeable Markov survival processes and weak continuity of predictive distributions We study exchangeable, Markov survival processes – stochastic processes giving rise to infinitely ex...
  5. On the asymptotic efficiency of selection procedures for independent Gaussian populations The field of discrete event simulation and optimization techniques motivates researchers to adjust c...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.