1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Estimation of population sizes and species ranges are central to population and conservation biology. It is widely appreciated that imperfect detection of mobile animals must be accounted for when estimating population size from presence-absence data. Sessile organisms also are imperfectly detected, but correction for detection probability in estimating their population sizes is rare. We illustrate challenges of detection probability and population estimation of sessile organisms using censuses of red wood ant (Formica rufa-group) nests as a case study. These ants, widespread in the northern hemisphere, can make large (up to 2-m tall), highly visible nests. Using data from a mapping campaign by eight observers with varying experience of sixteen 3600-m2 plots in the Black Forest region of southwest Germany, we compared three different statistical approaches (a nest-level data-augmentation patch-occupancy model with event-specific covariates; a plot-level Bayesian and maximum likelihood model; non-parametric Chao-type estimators) for quantifying detection probability of sessile organisms. Detection probabilities by individual observers of red wood ant nests ranged from 0.31 – 0.64 for small nests, depending on observer experience and nest size (detection rates were approximately 0.17 higher for large nests), but not on habitat characteristics (forest type, local vegetation). Robust estimation of population density of sessile organisms – even highly apparent ones such as red wood ant nests – thus requires estimation of detection probability, just as it does when estimating population density of rare or cryptic species. Our models additionally provide approaches to calculate the number of observers needed for a required level of accuracy. Estimating detection probability is vital not only when censuses are conducted by experts, but also when citizenscientists are engaged in mapping and monitoring of both common and rare species.

Pertenece a

Digital Access to Scholarship at Harvard  

Autor(es)

Berberich, Gabriele M. -  Dormann, Carsten F. -  Klimetzek, Dietrich -  Berberich, Martin B. -  Sanders, Nathan J. -  Ellison, Aaron M. - 

Id.: 69521611

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Palabras claveants - 

Tipo de recurso: Journal Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: open

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 10.1002/ecs2.1546
[References] Ecosphere

Fecha de contribución: 07-ene-2017

Contacto:

Localización:
* Quick submit: 2016-07-10T10:16:57-0400
* Berberich, Gabriele M., Carsten F. Dormann, Dietrich Klimetzek, Martin B. Berberich, Nathan J. Sanders, and Aaron M. Ellison. 2016. “Detection Probabilities for Sessile Organisms.” Ecosphere 7 (11) (November): e01546. Portico. doi:10.1002/ecs2.1546.
* 2150-8925

Otros recursos del mismo autor(es)

  1. Prediction uncertainty of environmental change effects on temperate European biodiversity. International audience
  2. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression A major focus of geographical ecology and macro ecology is to understand the causes of spatially str...
  3. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data ...
  4. The loss of species: Mangrove extinction risk and geographic areas of global concern Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively lo...

Otros recursos de la mismacolección

No existen otros recursos

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.