1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.

Pertenece a

DSpace at MIT  


Dorfman, Konstantin E. -  Xu, Dazhi -  Cao, Jianshu - 

Id.: 71215068

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo de recurso: Article  -  http://purl.org/eprint/type/JournalArticle  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] American Physical Society
[References] http://dx.doi.org/10.1103/PhysRevE.97.042120
[References] Physical Review E

Fecha de contribución: 15-abr-2018


* 2470-0045
* 2470-0053
* Dorfman, Konstantin E. et al. "Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence." Physical Review E 97, 4 (April 2018): 042120 © 2018 American Physical Society

Otros recursos del mismo autor(es)

  1. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth The interactions between graphene oxide (GO) and various biological entities have been actively inve...
  2. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao...
  3. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure....
  4. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum en...
  5. Initial system-environment correlations via the transfer-tensor method Open quantum systems exhibiting initial system-environment correlations are notoriously difficult to...

Otros recursos de la mismacolección

  1. Measurement of the Λb Polarization and Angular Parameters in Λb→J/ψΛ Decays from Pp Collisions at √s = 7 and 8 TeV An analysis of the bottom baryon decay Λb→J/ψ(→μ+μ−)Λ(→pπ−) is performed to measure the Λb polarizat...
  2. Scaling properties of multiscale equilibration We investigate the lattice spacing dependence of the equilibration time for a recently proposed mult...
  3. Connecting electronic entropy to empirically accessible electronic properties in high temperature systems A quantitative theoretical model connecting the thermopower and electronic entropy of molten systems...
  4. A thermodynamic basis for the electronic properties of molten semiconductors: the role of electronic entropy The thermodynamic origin of a relation between features of the phase diagrams and the electronic pro...
  5. Unsteady Adjoint of Pressure Loss for a Fundamental Transonic Turbine Vane High-fidelity simulations, e.g., large eddy simulation (LES), are often needed for accurately predic...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.