1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


The problem of random number generation from an uncorrelated random source (of unknown probability distribution) dates back to von Neumann's 1951 work. Elias (1972) generalized von Neumann's scheme and showed how to achieve optimal efficiency in unbiased random bits generation. Hence, a natural question is what if the sources are correlated? Both Elias and Samuelson proposed methods for generating unbiased random bits in the case of correlated sources (of unknown probability distribution), specifically, they considered finite Markov chains. However, their proposed methods are not efficient or have implementation difficulties. Blum (1986) devised an algorithm for efficiently generating random bits from degree-2 finite Markov chains in expected linear time, however, his beautiful method is still far from optimality on information-efficiency. In this paper, we generalize Blum's algorithm to arbitrary degree finite Markov chains and combine it with Elias's method for efficient generation of unbiased bits. As a result, we provide the first known algorithm that generates unbiased random bits from an arbitrary finite Markov chain, operates in expected linear time and achieves the information-theoretic upper bound on efficiency.

Pertenece a

Caltech Authors  


Zhou, Hongchao -  Bruck, Jehoshua - 

Id.: 55239736

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Article  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechAUTHORS:20120503-095551724
[References] http://authors.library.caltech.edu/31292/

Fecha de contribución: 24-ago-2016


* Zhou, Hongchao and Bruck, Jehoshua (2012) Efficient Generation of Random Bits From Finite State Markov Chains. IEEE Transactions on Information Theory, 58 (4). pp. 2490-2506. ISSN 0018-9448. http://resolver.caltech.edu/CaltechAUTHORS:20120503-095551724

Otros recursos del mismo autor(es)

  1. The capacity of some Pólya string models We study random string-duplication systems, called Pólya string models, motivated by certain random ...
  2. On the duplication distance of binary strings We study the tandem duplication distance between binary sequences and their roots. This distance is ...
  3. Secure RAID Schemes for Distributed Storage We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner th...
  4. Duplication-Correcting Codes for Data Storage in the DNA of Living Organisms The ability to store data in the DNA of a living organism has applications in a variety of areas inc...
  5. MAP: medial axis based geometric routing in sensor networks One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is ...

Otros recursos de la misma colección

  1. Learning-Based Near-Optimal Area-Power Trade-offs in Hardware Design for Neural Signal Acquisition Wireless implantable devices capable of monitoring the electrical activity of the brain are becoming...
  2. Reconstructing cosmic growth with kinetic Sunyaev-Zel’dovich observations in the era of stage IV experiments Future ground-based cosmic microwave background (CMB) experiments will generate competitive large-sc...
  3. On tightness of an entropic region outer bound for network coding and the edge removal property In this work, we study the Yeung network coding entropic function outer bound and prove an equivalen...
  4. A characterization of the capacity region for network coding with dependent sources In this work we characterize the capacity region for multi-source multi-terminal acyclic network cod...
  5. The capacity of some Pólya string models We study random string-duplication systems, called Pólya string models, motivated by certain random ...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.