1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

In this thesis, we study the exact eigenvalue distribution of product of independent rectangular complex Gaussian matrices and also that of product of independent truncated Haar unitary matrices and inverses of truncated Haar unitary matrices. The eigenvalues of these random matrices form determinantal point processes on the complex plane. We also study the limiting expected empirical distribution of appropriately scaled eigenvalues of those matrices as the size of matrices go to infinity. We give the first example of a random matrix whose eigenvalues form a non-rotation invariant determinantal point process on the plane. The second theme of this thesis is infinite products of random matrices. We study the asymptotic behaviour of singular values and absolute values of eigenvalues of product of i .i .d matrices of fixed size, as the number of matrices in the product in-creases to infinity. In the special case of isotropic random matrices, We derive the asymptotic joint probability density of the singular values and also that of the absolute values of eigenvalues of product of right isotropic random matrices and show them to be equal. As a corollary of these results, we show probability that all the eigenvalues of product of certain i .i .d real random matrices of fixed size converges to one, as the number of matrices in the product increases to infinity.

Pertenece a

ETD at Indian Institute of Science  

Autor(es)

Nanda Kishore Reddy, S - 

Id.: 70977477

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Palabras claveRandom Matrices - 

Tipo de recurso: Thesis  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [References] G28254

Fecha de contribución: 08-feb-2018

Contacto:

Localización:

Otros recursos que te pueden interesar

  1. A matrix Bougerol identity and the Hua-Pickrell measures We prove a Hermitian matrix version of Bougerol’s identity. Moreover, we construct the Hua-Pickrell ...
  2. Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix | Corrélations des valeurs propres d'une chaîne de matrices aléatoires, et la limite d'une matrice dépendant du temps URL: http://www-spht.cea.fr/articles/t98/001/
  3. Local single ring theorem The single ring theorem, by Guionnet, Krishnapur and Zeitouni in Ann. of Math. (2) 174 (2011) 1189–1...
  4. Outliers in the spectrum of large deformed unitarily invariant models We characterize the possible outliers in the spectrum of large deformed unitarily invariant additive...
  5. Random matrices, the Cohen–Lenstra heuristics, and roots of unity The Cohen–Lenstra–Martinet heuristics predict the frequency with which a fixed finite abelian group ...

Otros recursos de la mismacolección

  1. Compactness Theorems for The Spaces of Distance Measure Spaces and Riemann Surface Laminations Gromov’s compactness theorem for metric spaces, a compactness theorem for the space of compact metri...
  2. A Formal Proof of Feit-Higman Theorem in Agda In this thesis we present a formalization of the combinatorial part of the proof of Feit-Higman theo...
  3. A Posteriori Error Analysis of Discontinuous Galerkin Methods for Elliptic Variational Inequalities The main emphasis of this thesis is to study a posteriori error analysis of discontinuous Galerkin (...
  4. Central and Peripheral Correlates of Motor Planning A hallmark of human behaviour is that we can either couple or decouple our thoughts, decision and mo...
  5. Kinetic Theory Based Numerical Schemes for Incompressible Flows Turbulence is an open and challenging problem for mathematical approaches, physical modeling and num...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.