1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Evolution equations comprise a broad framework for describing the dynamics of a system in a general state space: when the state space is finite-dimensional, they give rise to systems of ordinary differential equations; for infinite-dimensional state spaces, they give rise to partial differential equations. Several modern statistical and machine learning methods concern the estimation of objects that can be formalized as solutions to evolution equations, in some appropriate state space, even if not stated as such. The corresponding equations, however, are seldom known exactly, and are empirically derived from data, often by means of non-parametric estimation. This induces uncertainties on the equations and their solutions that are challenging to quantify, and moreover the diversity and the specifics of each particular setting may obscure the path for a general approach. In this paper, we address the problem of constructing general yet tractable methods for quantifying such uncertainties, by means of asymptotic theory combined with bootstrap methodology. We demonstrates these procedures in important examples including gradient line estimation, diffusion tensor imaging tractography, and local principal component analysis. The bootstrap perspective is particularly appealing as it circumvents the need to simulate from stochastic (partial) differential equations that depend on (infinite-dimensional) unknowns. We assess the performance of the bootstrap procedure via simulations and find that it demonstrates good finite-sample coverage.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Wei, Susan -  Panaretos, Victor M. - 

Id.: 70990781

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveDiffusion tensor imaging - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 The Institute of Mathematical Statistics and the Bernoulli Society

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 17-feb-2018

Contacto:

Localización:
* Electron. J. Statist. 12, no. 1 (2018), 249-276
* doi:10.1214/17-EJS1382

Otros recursos que te pueden interesar

  1. Interactive Diffusion Tensor Tractography Visualization for Neurosurgical Planning BACKGROUND: Diffusion tensor imaging (DTI) infers the trajectory and location of large white matter ...
  2. A review of diffusion tensor imaging studies in schizophrenia Both post-mortem and neuroimaging studies have contributed significantly to what we know about the b...
  3. Using DTI to assess white matter microstructure in Cerebral Small Vessel Disease (SVD) in multi-centre studies. Diffusion tensor imaging (DTI) metrics such as Fractional Anisotropy (FA) and Mean Diffusivity (MD) ...
  4. Long-term white matter tract reorganization following prolonged febrile seizures. OBJECTIVE: Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter c...
  5. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to retu...

Otros recursos de la mismacolección

  1. Large and moderate deviations for kernel–type estimators of the mean density of Boolean models The mean density of a random closed set with integer Hausdorff dimension is a crucial notion in stoc...
  2. Regularity properties and simulations of Gaussian random fields on the sphere cross time We study the regularity properties of Gaussian fields defined over spheres cross time. In particular...
  3. Kernel estimation of extreme regression risk measures The Regression Conditional Tail Moment (RCTM) is the risk measure defined as the moment of order $b\...
  4. Statistical properties of simple random-effects models for genetic heritability Random-effects models are a popular tool for analysing total narrow-sense heritability for quantitat...
  5. Adaptive estimation in the nonparametric random coefficients binary choice model by needlet thresholding In the random coefficients binary choice model, a binary variable equals 1 iff an index $X^{\top}\be...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.