Detalles del recurso

Descripción

We prove local and global energy decay for the wave equation in a wave guide with damping at infinity. More precisely, the absorption index is assumed to converge slowly to a positive constant, and we obtain the diffusive phenomenon typical for the contribution of low frequencies when the damping is effective at infinity. On the other hand, the usual Geometric Control Condition is not necessarily satisfied so we may have a loss of regularity for the contribution of high frequencies. Since our results are new even in the Euclidean space, we also state a similar result in this case.

Pertenece a

Archive EduTice a CCSD electronic archive server based on P.A.O.L  

Autor(es)

Malloug, Mohamed -  Royer, Julien - 

Id.: 69724035

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Palabras clave[MATH.MATH -  MP] Mathematics [math]/Mathematical Physics [math -  ph] - 

Tipo de recurso: info:eu-repo/semantics/preprint  -  Preprints, Working Papers, ...  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [References] info:eu-repo/semantics/altIdentifier/arxiv/1606.02549

Fecha de contribución: 16-mar-2017

Contacto:

Localización:
* hal-01328865

Otros recursos del mismo autor(es)

  1. Local Energy Decay and Diffusive Phenomenon in a Dissipative Wave Guide We prove the local energy decay for the wave equation in a wave guide with dissipation at the bounda...
  2. Mourre's method for a dissipative form perturbation We prove uniform resolvent estimates for an abstract operator given by a dissipative perturbation of...
  3. Semiclassical measure for the solution of the Helmholtz equation with an unbounded source We study the high frequency limit for the dissipative Helmholtz equation when the source term concen...
  4. Local Energy Decay for the Damped Wave Equation We prove local energy decay for the damped wave equation on R^d. The problem which we consider is gi...
  5. Sharp low frequency resolvent estimates on asymptotically conical manifolds On a class of asymptotically conical manifolds, we prove two types of low frequency estimates for th...

Otros recursos de la mismacolección

No existen otros recursos

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.