1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Esophageal Adenocarcinoma (EAC) is considered as the early stage of esophageal cancer developed mainly from the pre-malignant changes in esophagus lining named Barrett’s Esophagus (BE). Throughout the gastroin- testinal tract examination, premalignant and early cancer stages in the esoph- agus are usually overlooked as they are considered challenging to detect and requires a significant experience. Computer Aided Detection (CAD) systems, therefore, could be helpful in automatically detecting early cancerous lesions. With the recent advances in deep learning, the performance of object detec- tion methods has been increased to a great extent. In this paper, we aim to evaluate the performance of different state-of-the-art deep learning detection methods (RCNN, Fast, Rcnn, Faster RCNN, SSD) to automatically allocate BE abnormalities. To achieve that, a dataset of High-Definition white light en- doscopy images from 39 patients with corresponding manually annotated by five experienced clinicians has been evaluated. Experimental results show that Single Shor Multibox Detector (SSD) , outperforms other methods in terms of the evaluation measures

Pertenece a

Faculty of Technology ePrints Service  

Autor(es)

Ghatwary, Noha -  Ye, Xujiong -  Zolgharni, Massoud - 

Id.: 71510627

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveG400 Computer Science - 

Tipo de recurso: Conference or Workshop contribution  -  NonPeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://eprints.lincoln.ac.uk/32583/

Fecha de contribución: 06-jul-2018

Contacto:

Localización:
* Ghatwary, Noha and Ye, Xujiong and Zolgharni, Massoud (2018) Evaluation of Early Esophageal Adenocarcinoma Detection Using Deep Learning. In: CARS 2018 Computer Assisted Radiology and Surgery, 20-27, June, 2018, Berlin.

Otros recursos del mismo autor(es)

  1. An End-to-End Deep Neural Architecture for Optical Character Verification and Recognition in Retail Food Packaging There exist various types of information in retail food packages, including food product name, ingre...
  2. A Novel Camera Based Approach for Automatic Expiry Date Detection and Recognition on Food Packages Part 2: Deep Learning
  3. Fully automatic segmentation and objective assessment of atrial scars for longstanding persistent atrial fibrillation patients using late gadolinium-enhanced MRI Purpose: Atrial fibrillation (AF) is the most common heart rhythm disorder and causes considerable m...
  4. Regression analysis for paths inference in a novel Proton CT system In this work, we analyse the proton paths inference for the construction of CT imagery based on a ne...
  5. Doppler assessment of aortic stenosis: reading the peak velocity is superior to velocity time integral Introduction Previous studies of the reproducibility of echocardiographic assessment of aortic steno...

Otros recursos de la mismacolección

  1. The Composite Theory: An African contribution to the academic freedom discourse This article expounds the Composite Theory to define the parameters for the exercise of academic fre...
  2. Commentary: Effects of sleep on word pair memory in children–separating item and source memory aspects N/A (no abstract)
  3. Utopia and Utopianism in the Fiction of Kim Stanley Robinson An overview of Utopia and Utopianism in the work of the American science-fiction writer Kim Stanley ...
  4. Selective spectrofluorimetric method for the determination of perindopril erbumine in bulk and tablets through derivatization with dansyl chloride Background: Perindopril erbumine is an antihypertensive, which belongs to the category of angiotensi...
  5. Impact of a protein-based nutritional supplement upon dietary balance in trained games players IMPACT OF A PROTEIN-BASED NUTRITIONAL SUPPLEMENT UPON DIETARY BALANCE IN TRAINED GAMES PLAYERS Ellm...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.