1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Suppose that $G$ is a complex, reductive algebraic group. A real form of $G$ is an antiholomorphic involutive automorphism $\sigma$ , so $G(\mathbb{R})=G(\mathbb{C})^{\sigma}$ is a real Lie group. Write $H^{1}(\sigma,G)$ for the Galois cohomology (pointed) set $H^{1}(\operatorname{Gal}(\mathbb{C}/\mathbb{R}),G)$ . A Cartan involution for $\sigma$ is an involutive holomorphic automorphism $\theta$ of $G$ , commuting with $\sigma$ , so that $\theta\sigma$ is a compact real form of $G$ . Let $H^{1}(\theta,G)$ be the set $H^{1}(\mathbb{Z}_{2},G)$ , where the action of the nontrivial element of $\mathbb{Z}_{2}$ is by $\theta$ . By analogy with the Galois group, we refer to $H^{1}(\theta,G)$ as the Cartan cohomology of $G$ with respect to $\theta$ . Cartan’s classification of real forms of a connected group, in terms of their maximal compact subgroups, amounts to an isomorphism $H^{1}(\sigma,G_{\mathrm{ad}})\simeq H^{1}(\theta,G_{\mathrm{ad}})$ , where $G_{\mathrm{ad}}$ is the adjoint group. Our main result is a generalization of this: there is a canonical isomorphism $H^{1}(\sigma,G)\simeq H^{1}(\theta,G)$ . ¶ We apply this result to give simple proofs of some well-known structural results: the Kostant–Sekiguchi correspondence of nilpotent orbits; Matsuki duality of orbits on the flag variety; conjugacy classes of Cartan subgroups; and structure of the Weyl group. We also use it to compute $H^{1}(\sigma,G)$ for all simple, simply connected groups and to give a cohomological interpretation of strong real forms. For the applications it is important that we do not assume that $G$ is connected.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Adams, Jeffrey -  Taïbi, Olivier - 

Id.: 71215093

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveGalois cohomology - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 Duke University Press

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0012-7094
[References] 1547-7398

Fecha de contribución: 14-abr-2018

Contacto:

Localización:
* Duke Math. J. 167, no. 6 (2018), 1057-1097
* doi:10.1215/00127094-2017-0052

Otros recursos del mismo autor(es)

  1. Eigenvarieties for classical groups and complex conjugations in Galois representations The goal of this paper is to remove the irreducibility hypothesis in a theorem of Richard Taylor des...
  2. Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula 89 pages, 28 tables, comments welcome. Much more data available at http://www.math.ens.fr/~taibi/dim...
  3. $rec.titulo
  4. Feature based analysis of selective limited motion in assemblies by Jeffrey D. Adams.

Otros recursos de la mismacolección

  1. Almost sure multifractal spectrum of Schramm–Loewner evolution Suppose that $\eta$ is a Schramm–Loewner evolution ( $\operatorname{SLE}_{\kappa}$ ) in a smoothly b...
  2. Group cubization We present a procedure of group cubization: it results in a group whose features resemble some of th...
  3. Odd degree number fields with odd class number For every odd integer $n\geq3$ , we prove that there exist infinitely many number fields of degree $...
  4. Regularization under diffusion and anticoncentration of the information content Under the Ornstein–Uhlenbeck semigroup $\{U_{t}\}$ , any nonnegative measurable $f:\mathbb{R}^{n}\to...
  5. A geometric characterization of toric varieties We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.