1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


We extend the Aldous–Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman’s random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of ‘excessive ends’ in the WUSF is nonrandom in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm [Electron. J. Probab. 13 (2008) 1702–1725], while the third extends a recent result of the author. ¶ Finally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Hutchcroft, Tom - 

Id.: 71074667

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveSpanning forests - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0091-1798
[References] 2168-894X

Fecha de contribución: 10-mar-2018


* doi:10.1214/17-AOP1203

Otros recursos del mismo autor(es)

  1. The Hammersley-Welsh bound for self-avoiding walk revisited The Hammersley-Welsh bound (Quart. J. Math., 1962) states that the number $c_n$ of length $n$ self-a...
  2. Boundaries of planar graphs: a unified approach We give a new proof that the Poisson boundary of a planar graph coincides with the boundary of its s...

Otros recursos de la mismacolección

  1. Errata to “Distance covariance in metric spaces” We correct several statements and proofs in our paper, Ann. Probab. 41, no. 5 (2013), 3284–3305.
  2. On the mixing time of Kac’s walk and other high-dimensional Gibbs samplers with constraints Determining the total variation mixing time of Kac’s random walk on the special orthogonal group $\m...
  3. Stochastic Airy semigroup through tridiagonal matrices We determine the operator limit for large powers of random symmetric tridiagonal matrices as the siz...
  4. On the spectral radius of a random matrix: An upper bound without fourth moment Consider a square matrix with independent and identically distributed entries of zero mean and unit ...
  5. Weak symmetric integrals with respect to the fractional Brownian motion The aim of this paper is to establish the weak convergence, in the topology of the Skorohod space, o...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.