1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Occupancy models are typically used to determine the probability of a species being present at a given site while accounting for imperfect detection. The survey data underlying these models often include information on several predictors that could potentially characterize habitat suitability and species detectability. Because these variables might not all be relevant, model selection techniques are necessary in this context. In practice, model selection is performed using the Akaike Information Criterion (AIC), as few other alternatives are available. This paper builds an objective Bayesian variable selection framework for occupancy models through the intrinsic prior methodology. The procedure incorporates priors on the model space that account for test multiplicity and respect the polynomial hierarchy of the predictors when higher-order terms are considered. The methodology is implemented using a stochastic search algorithm that is able to thoroughly explore large spaces of occupancy models. The proposed strategy is entirely automatic and provides control of false positives without sacrificing the discovery of truly meaningful covariates. The performance of the method is evaluated and compared to AIC through a simulation study. The method is illustrated on two datasets previously studied in the literature.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Taylor -  Rodríguez, Daniel -  Womack, Andrew J. -  Fuentes, Claudio -  Bliznyuk, Nikolay - 

Id.: 69874366

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveimperfect detection - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 International Society for Bayesian Analysis

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1936-0975
[References] 1931-6690

Fecha de contribución: 31-ago-2017

Contacto:

Localización:
* Bayesian Anal. 12, no. 3 (2017), 855-877
* doi:10.1214/16-BA1014

Otros recursos del mismo autor(es)

  1. Cassini CAPS identification of pickup ion compositions at Rhea Saturn's largest icy moon, Rhea, hosts a tenuous surface-sputtered exosphere composed primarily of m...
  2. Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair International audience
  3. Failure of Thin Films Under Low-Cycle Fatigue Thin films or coatings applied on a substrate are utilised in a variety of applications such as micr...
  4. Direct top-quark decay width measurement in the tt¯ lepton+jets channel at √s = 8 TeV with the ATLAS experiment This paper presents a direct measurement of the decay width of the top quark using tt ¯ events in th...
  5. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics Nucleic acid therapeutics are limited by inefficient delivery to target tissues and cells and by an ...

Otros recursos de la mismacolección

  1. Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors We present a locally adaptive nonparametric curve fitting method that operates within a fully Bayesi...
  2. Optimal Gaussian Approximations to the Posterior for Log-Linear Models with Diaconis–Ylvisaker Priors In contingency table analysis, sparse data is frequently encountered for even modest numbers of vari...
  3. Dirichlet Process Mixture Models for Modeling and Generating Synthetic Versions of Nested Categorical Data We present a Bayesian model for estimating the joint distribution of multivariate categorical data w...
  4. Regularization and Confounding in Linear Regression for Treatment Effect Estimation This paper investigates the use of regularization priors in the context of treatment effect estimati...
  5. Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo Optimal experimental design is an important methodology for most efficiently allocating resources in...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.