1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


Occupancy models are typically used to determine the probability of a species being present at a given site while accounting for imperfect detection. The survey data underlying these models often include information on several predictors that could potentially characterize habitat suitability and species detectability. Because these variables might not all be relevant, model selection techniques are necessary in this context. In practice, model selection is performed using the Akaike Information Criterion (AIC), as few other alternatives are available. This paper builds an objective Bayesian variable selection framework for occupancy models through the intrinsic prior methodology. The procedure incorporates priors on the model space that account for test multiplicity and respect the polynomial hierarchy of the predictors when higher-order terms are considered. The methodology is implemented using a stochastic search algorithm that is able to thoroughly explore large spaces of occupancy models. The proposed strategy is entirely automatic and provides control of false positives without sacrificing the discovery of truly meaningful covariates. The performance of the method is evaluated and compared to AIC through a simulation study. The method is illustrated on two datasets previously studied in the literature.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Taylor -  Rodríguez, Daniel -  Womack, Andrew J. -  Fuentes, Claudio -  Bliznyuk, Nikolay - 

Id.: 69874366

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveimperfect detection - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 International Society for Bayesian Analysis

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1936-0975
[References] 1931-6690

Fecha de contribución: 31-ago-2017


* Bayesian Anal. 12, no. 3 (2017), 855-877
* doi:10.1214/16-BA1014

Otros recursos de la mismacolección

  1. Deep Learning: A Bayesian Perspective Deep learning is a form of machine learning for nonlinear high dimensional pattern matching and pred...
  2. Uncertainty Quantification for the Horseshoe (with Discussion) We investigate the credible sets and marginal credible intervals resulting from the horseshoe prior ...
  3. Correction to: “Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density” In this note, we highlight and provide corrections to two errors in the paper: Karthik Sriram, R.V. ...
  4. Marginal Pseudo-Likelihood Learning of Discrete Markov Network Structures Markov networks are a popular tool for modeling multivariate distributions over a set of discrete va...
  5. Bayesian Analysis of the Stationary MAP2 In this article we describe a method for carrying out Bayesian estimation for the two-state stationa...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.