1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


Occupancy models are typically used to determine the probability of a species being present at a given site while accounting for imperfect detection. The survey data underlying these models often include information on several predictors that could potentially characterize habitat suitability and species detectability. Because these variables might not all be relevant, model selection techniques are necessary in this context. In practice, model selection is performed using the Akaike Information Criterion (AIC), as few other alternatives are available. This paper builds an objective Bayesian variable selection framework for occupancy models through the intrinsic prior methodology. The procedure incorporates priors on the model space that account for test multiplicity and respect the polynomial hierarchy of the predictors when higher-order terms are considered. The methodology is implemented using a stochastic search algorithm that is able to thoroughly explore large spaces of occupancy models. The proposed strategy is entirely automatic and provides control of false positives without sacrificing the discovery of truly meaningful covariates. The performance of the method is evaluated and compared to AIC through a simulation study. The method is illustrated on two datasets previously studied in the literature.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Taylor -  Rodríguez, Daniel -  Womack, Andrew J. -  Fuentes, Claudio -  Bliznyuk, Nikolay - 

Id.: 69874366

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveimperfect detection - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 International Society for Bayesian Analysis

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1936-0975
[References] 1931-6690

Fecha de contribución: 17-mar-2018


* Bayesian Anal. 12, no. 3 (2017), 855-877
* doi:10.1214/16-BA1014

Otros recursos del mismo autor(es)

  1. SNAP satellite focal plane development The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope deliv...
  2. Gauging acceptance of a hepatitis C test by family planning clinic attendees in Glasgow, UK Background In the UK, pregnant women are not offered and recommended a hepatitis C virus (HCV) test ...
  3. The ATLAS Simulation Infrastructure The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for larg...
  4. The ATLAS Inner Detector commissioning and calibration The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips...
  5. Readiness of the ATLAS liquid argon calorimeter for LHC collisions The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, ...

Otros recursos de la mismacolección

  1. Prior Distributions for Objective Bayesian Analysis We provide a review of prior distributions for objective Bayesian analysis. We start by examining so...
  2. Bayesian Cluster Analysis: Point Estimation and Credible Balls (with Discussion) Clustering is widely studied in statistics and machine learning, with applications in a variety of f...
  3. Modelling and Computation Using NCoRM Mixtures for Density Regression Normalized compound random measures are flexible nonparametric priors for related distributions. We ...
  4. Sampling Errors in Nested Sampling Parameter Estimation Sampling errors in nested sampling parameter estimation differ from those in Bayesian evidence calcu...
  5. A New Regression Model for Bounded Responses Aim of this contribution is to propose a new regression model for continuous variables bounded to th...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.