1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

In this paper we consider Bernoulli percolation on an infinite connected bounded degrees graph $G$. Assuming the uniqueness of the infinite open cluster and a quasi-multiplicativity of crossing probabilities, we prove the existence of Kesten’s incipient infinite cluster. We show that our assumptions are satisfied if $G$ is a slab $\mathbb{Z} ^2\times \{0,\ldots ,k\}^{d-2}$ ($d\geq 2$, $k\geq 0$). We also argue that the quasi-multiplicativity assumption should hold for $G=\mathbb{Z} ^d$ when $d<6$, but not when $d>6$.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Basu, Deepan -  Sapozhnikov, Artem - 

Id.: 69834642

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveincipient infinite cluster - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 The Institute of Mathematical Statistics and the Bernoulli Society

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1083-589X

Fecha de contribución: 27-may-2017

Contacto:

Localización:
* Electron. Commun. Probab.
* doi:10.1214/17-ECP56

Otros recursos del mismo autor(es)

  1. Random walks on infinite percolation clusters in models with long-range correlations For a general class of percolation models with long-range correlations on $\mathbb{Z}^{d}$, $d\geq2$...
  2. The incipient infinite cluster does not stochastically dominate the invasion percolation cluster in two dimensions This note is motivated by results of Angel, Goodman, den Hollander and Slade (2008) and Da, Sapozhni...
  3. On the transience of random interlacements We consider the interlacement Poisson point process on the space of doubly-infinite $\mathbb{Z}^d$-v...
  4. Upper bound on the expected size of the intrinsic ball We give a short proof of Theorem 1.2 (i) from the paper "The Alexander-Orbach conjecture holds in hi...
  5. The effect of small quenched noise on connectivity properties of random interlacements Random interlacements (at level $u$) is a one parameter family of random subsets of $\mathbb{Z}^d$ i...

Otros recursos de la mismacolección

  1. The frog model with drift on $\mathbb{R} $ Consider a Poisson process on $\mathbb{R} $ with intensity $f$ where $0 \leq f(x)<\infty $ for ${x}\...
  2. Survival asymptotics for branching random walks in IID environments We first study a model, introduced recently in [4], of a critical branching random walk in an IID ra...
  3. About the constants in the Fuk-Nagaev inequalities In this paper we give efficient constants in the Fuk-Nagaev inequalities. Next we derive new upper b...
  4. An elementary approach to Gaussian multiplicative chaos A completely elementary and self-contained proof of convergence of Gaussian multiplicative chaos is ...
  5. Two observations on the capacity of the range of simple random walks on $\mathbb{Z} ^3$ and $\mathbb{Z} ^4$ We prove a weak law of large numbers for the capacity of the range of simple random walks on $\mathb...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.