Sunday, August 31, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Linear relations between polynomial orbits

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

Pertenece a: Project Euclid (Hosted at Cornell University Library)  

Descripción: We study the orbits of a polynomial $f\in \mathbb {C}[X]$ , namely, the sets $\{\alpha,f(\alpha),f(f(\alpha)),\ldots\}$ with $\alpha\in \mathbb {C}$ . We prove that if two nonlinear complex polynomials $f,g$ have orbits with infinite intersection, then $f$ and $g$ have a common iterate. More generally, we describe the intersection of any line in $\mathbb {C}^{d}$ with a $d$ -tuple of orbits of nonlinear polynomials, and we formulate a question which generalizes both this result and the Mordell–Lang conjecture.

Autor(es): Ghioca, Dragos -  Tucker, Thomas J. -  Zieve, Michael E. - 

Id.: 55259223

Idioma: English  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras clave37F10 - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Duke University Press

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0012-7094
[References] 1547-7398

Fecha de contribución: 25-jul-2012

Contacto:

Localización:
* Duke Math. J. 161, no. 7 (2012), 1379-1410
* doi:10.1215/00127094-1598098


Otros recursos del mismo autor(es)

  1. Curves of Every Genus with Many Points, II: Asymptotically Good Families We resolve a 1983 question of Serre by constructing curves with many points of every genus over ever...
  2. Symplectic spreads and permutation polynomials Every symplectic spread of PG(3, q), or equivalently every ovoid of Q(4, q), is shown to give a cert...
  3. Symplectic spreads and permutation polynomials Every symplectic spread of PG(3, q), or equivalently every ovoid of Q(4, q), is shown to give a cert...
  4. Hardware simulation of diesel generator and microgrid stability Over the last few years, people have begun to depend less on large power plants with extensive distr...
  5. Distinct Mutation Pathways of Non-Subtype B HIV-1 during In Vitro Resistance Selection with Nonnucleoside Reverse Transcriptase Inhibitors ▿ † Studies were conducted to investigate mutation pathways among subtypes A, B, and C of human immunode...

Otros recursos de la misma colección

  1. Relating signed and classical Kazhdan–Lusztig polynomials Motivated by studying the unitary dual problem, a variation of Kazhdan–Lusztig polynomials was defin...
  2. Correction to “Signatures of invariant Hermitian forms on irreducible highest weight modules,” Duke Math. J. 142 (2008), 165–196
  3. Plancherel representations of $U(\infty)$ and correlated Gaussian free fields We study asymptotics of traces of (noncommutative) monomials formed by images of certain elements of...
  4. Polarisations et isogénies Soit $A$ une variété abélienne définie sur un corps de nombres $k$ . Nous démontrons qu’il existe un...
  5. Construction of complete embedded self-similar surfaces under mean curvature flow, part III We present new examples of complete embedded self-similar surfaces under mean curvature flow by glui...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso