1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


There has been a huge rise in interest in the design of energy efficient wireless sensor networks (WSN) and body area networks (BAN) with the advent of many new applications over the last few decades. The number of sensor nodes in these applications has also increased tremendously in the order of few hundreds in recent years. A typical sensor node in a WSN consists of circuits like RF transceivers, micro-controllers or DSP, ADCs, sensors, and power supply circuits. The RF transmitter and receiver circuits mainly the frequency synthesizers(synthesis of RF carrier and local oscillator signals in transceivers) consume a significant percentage of its total power due to its high frequency of operation. A charge-pump phase locked loop (CP-PLL) is the most commonly used frequency synthesizer architecture in these applications. The growing demands of WSN applications, such as low power consumption larger number of sensor nodes, single chip solution, and longer duration operation presents several design challenges for these transmitter and frequency synthesizer circuits in these applications and a few are listed below, Low power frequency synthesizer and transmitter designs with better spectral performance is essential for an energy efficient operation of these applications. The spurious tones in the frequency synthesizer output will mix the interference signals from nearby sensor nodes and from other interference sources present nearby ,to degrade the wireless transmitter and receiver performance[1]. With the increased density of sensor nodes (more number of in-band interference sources) and degraded performance of analog circuits in the nano-meter CMOS process technologies, the spur reduction techniques are essential to improve the performance of frequency synthesizers in these applications. A single chip solution of sensor nodes with its analog and digital circuits integrated on the same die is preferred for its low power, low cost, and reduced size implementation. However, the parasitic interactions between these analog and digital sub-systems integrated on a common substrate, degrade the spectral performance of frequency synthesizers in these implementations[2]. Therefore, techniques to improve the mixed signal integration performance of these circuits are in great demand. In this thesis, we present a custom designed energy efficient 2.4 GHz BFSK/ASK transmitter architecture using a low power frequency synthesizer design technique taking advantage of the CMOS technology scaling benefits. Furthermore, a few design guidelinesandsolutionstoimprovethespectralperformanceoffrequency synthesizer circuits and in-turn the performance of transmitters are also presented. The target application being short distance, low power, and battery operated wireless communication applications. The contributions in this thesis are, Spectral performance improvement techniques The CP mismatch current is a dominant source of reference spurs in the nano-meter CMOS PLL implementations due to its worsened channel length modulation effect [3]. In this work, we present a CP mismatch current calibration technique using an adaptive body bias tuning of its PMOS transistors. Chip prototype of 2.4 GHzCP-PLLwith the proposed CP calibration technique was fabricated in UMC 0.13 µm CMOS process. Measurements show a CP mismatch current of less than 0.3 µA(0.55 %) using the proposed calibration technique over the VCO control voltage range 0.3 to 1 V. The closed loop PLL measurements using the proposed technique exhibited a 9dB reduction in the reference spur levels across the PLL output frequency range 2.4 -2.5 GHz. The parasitic interactions between analog and digital circuits through the common substrate severely affects the performance of CP-PLLs. In this work, we experimentally demonstrate the effect of periodic switching noise generated from the digital buffers on the performance of charge-pump PLLs. The sensitivity of PLL performance metrics such as output spur level, phase noise, and output jitter are monitored against the variations in the properties of a noise injector digital signal. Measurements from a 500 MHz CP-PLL shows that the pulsed noise injection with the duty cycle of noise injector signal reduced from 50% to 20%, resulted in a 12.53 dB reduction in its output spur level and a 107 ps reduction in its Pk-Pk deterministic period jitter performance. Low power circuit techniques A low power frequency synthesizer design using a digital frequency multiplication technique is presented. The proposed frequency multiply by 3 digital edge combiner design having a very few logic gates, demonstrated a significant reduction in the power consumption of frequency synthesizer circuits, with an acceptable spectral performance suitable for these relaxed performance applications. A few design guidelines and techniques to further improve its spectral performance are also discussed and validated through simulations. Chip prototypes of 2.4 GHz CP-PLLs with and without digital frequency multiplier circuits are fabricated in UMC 0.13 µm CMOS process. The 2.4 GHz CP-PLL using the proposed digital frequency multiplication technique (10.7 mW) consumed a much reduced power compared to a conventional implementation(20.3 mW). A custom designed, energy efficient 2.4 GHz BFSK/ASK transmitter architecture using the proposed low power frequency synthesizer design technique is presented. The transmitter uses a class-D power amplifier to drive the 50Ω antenna load. Spur reduction techniques in frequency synthesizers are also used to improve the spectral performance of the transmitter. A chip prototype of the proposed transmitter architecture was implemented in UMC0.13 µm CMOS process. The transmitter consume14 mA current from a 1.3V supply voltage and achieve improved energy efficiencies of 0.91 nJ/bit and 6.1 nJ/bit for ASK and BFSK modulations with data rates 20Mb/s & 3Mb/s respectively.

Pertenece a

ETD at Indian Institute of Science  


Manikandan, R R - 

Id.: 70078999

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Palabras claveTransmitter Architecture - 

Tipo de recurso: Thesis  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [References] G26869

Fecha de contribución: 10-ene-2018



Otros recursos que te pueden interesar

  1. Nutritional value of Chabahar Bay (Oman Sea) Sargassum lentifollium before and after monsoon season The proximate composition of brown seaweed Sargassum lentifollium was investigated in this study alo...
  2. The effects of different concentration of salinities on the biochemical components and growth rate of single cell microalgae, Tetraselmis chuii In This study Growth rate and biochemical components including carbohydrate, chlorophyll a and b and...
  3. The study of Total Hemocyte Count and Total Protein Plasma in shrimp Litopenaeus vannamei infected with Monodon baculovirus The investigation of Total Hemocyte Count (THC) and Total Protein Plasma (TPP) in shrimp juvenile Li...
  4. Evaluation of physiological aspects and molecular identification of Saprolegnia isolates from rainbow trout (Oncorhynchus mykiss) and Caspian trout (Salmo trutta caspius) eggs based on RAPD–PCR The genus of saprolegnia is one of the most important pathogenic aquatic fungi in farmed and wild fi...
  5. Comparison of four RNA isolating methods for identification of spring viraemia of carp virus (SVCV) Spring viraemia of carp virus (SVCV), a negative sense single stranded RNA virus of the family Rhabd...

Otros recursos de la mismacolección

  1. Wide-Band Radio-Frequency All-Pass Networks for Analog Signal Processing There is an ever increasing demand for higher spectral usage in wireless communication, radar and im...
  2. Functional Index Coding, Network Function Computation, and Sum-Product Algorithm for Decoding Network Codes Network coding was introduced as a means to increase throughput in communication networks when compa...
  3. Fast Solvers for Integtral-Equation based Electromagnetic Simulations With the rapid increase in available compute power and memory, and bolstered by the advent of effici...
  4. Role of Nonlocality and Counterfactuality in Quantum Cryptography Quantum cryptography is arguably the most successfully applied area of quantum information theory. I...
  5. Dynamics, Fluctuations and Rheological Applications of Magnetic Nanopropellers Micron scale robots going inside our body and curing various ailments is a technolog¬ical dream that...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.