1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Recognition systems based on biometrics (faces, hand shapes and fingerprints etc.) are finally taking off although it has taken a long way to come. Fingerprints have been a precious tool for law enforcement, forensics and recently in commercial use for over a century. Evaluate the performance of these emerging technologies is tricky problem. Most fingerprint verification algorithms rely on minutiae features, and these algorithms can only be as robust as the underlying minutiae features. Therefore, reliable minutiae extraction is vital to a system’s performance. Most of the feature extraction techniques extract features from thinned images but while dealing with binarization and skeletization of image it introduces noise or superfluous information, which creates troubles for genuine feature extraction. In this paper we have used the mathematical morphology to remove the superfluous information for genuine feature extraction and measure the feature extraction performance through sensitivity and specificity.

Pertenece a

CiteSeerX Scientific Literature Digital Library and Search Engine  

Autor(es)

Vikas Humbe -  S. S. Gornale -  Ramesh Manza -  K. V. Kale - 

Id.: 45682839

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveFeature Extraction - 

Tipo de recurso: Texto Narrativo  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Metadata may be used without restrictions as long as the oai identifier remains attached to it.

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] http://ijcss.org/Volume1/Issue2/V1_I2_053.pdf
[References] 10.1.1.119.7009
[References] 10.1.1.6.7497
[References] 10.1.1.19.6417
[References] 10.1.1.104.690
[References] 10.1.1.19.6687

Fecha de contribución: 28-jul-2011

Contacto:

Localización:

Otros recursos que te pueden interesar

  1. Desarrollo y análisis de clasificadores de señales de audio. Nowadays, technology tends to join the Artificial Inteligence field, where systems take decisions. I...
  2. Towards Detecting Compromised Accounts on Social Networks Compromising social network accounts has become a profitable course of action for cybercriminals. By...
  3. Local structure prediction for gland segmentation We present a method to segment individual glands from colon histopathology images. Segmentation base...
  4. Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks We investigate glandular structure segmentation in colon histology images as a window-based classifi...
  5. Feature diversity for optimized human micro-Doppler classification using multistatic radar This paper investigates the selection of different combinations of features at different multistatic...

Otros recursos de la mismacolección

No existen otros recursos

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.