1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-1 (TCF-1) (gene name Tcf7). To identify additional regulators of T cell specification, a cDNA library from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were identified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expression of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin^−Sca-1^+Kit^+CD27^−) and multipotent progenitors (Lin^−Sca-1^+Kit^+CD27^+), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bcl11b, TCF-1 (Tcf7), and HEBalt, Notch target Deltex1, Deltex3L, Fkbp5, Eva1, and Tmem131. Like GATA3 and Deltex1, Bcl11b, Fkbp5, and Eva1 were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only Bcl11b and HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative 1 and double negative 2) corresponding to T lineage specification. Bcl11b was uniquely T lineage restricted and induced by Notch/Delta signaling specifically upon entry into the T lineage differentiation pathway.

Pertenece a

Caltech Authors  

Autor(es)

Tydell, C. C. -  David -  Fung, Elizabeth -  Sharon -  Moore, Jonathan E. -  Rowen, Lee -  Taghon, Tom -  Rothenberg, E. V. - 

Id.: 69634113

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Article  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechAUTHORS:20170210-153114201
[References] http://authors.library.caltech.edu/74217/

Fecha de contribución: 12-feb-2017

Contacto:

Localización:
* Tydell, C. C. and David-Fung, Elizabeth-Sharon and Moore, Jonathan E. and Rowen, Lee and Taghon, Tom and Rothenberg, E. V. (2007) Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway. Journal of Immunology, 179 (1). pp. 421-438. ISSN 0022-1767. http://resolver.caltech.edu/CaltechAUTHORS:20170210-153114201

Otros recursos del mismo autor(es)

  1. Traduire les scholies de Pindare... II. Interprétation, histoire, spectacle International audience
  2. Towards New Integrated Information and Communication Infrastructures in E-Health. Examples from cardiology. International audience
  3. The Jellyfish Cassiopea Exhibits a Sleep-like State Do all animals sleep? Sleep has been observed in many vertebrates, and there is a growing body of ev...
  4. Usseau (Deux-Sèvres), l’approvisionnement en céramique d’une agglomération du Haut-Empire de l’extrémité nord du Bassin aquitain
  5. Method and apparatus for network congestion control The present invention is a delay based model and in fact uses queuing delay as a congestion measure,...

Otros recursos de la mismacolección

  1. How do the structure and the parameters of Gaussian tree models affect structure learning? The problem of learning tree-structured Gaussian graphical models from i.i.d. samples is considered....
  2. Energy scaling laws for distributed inference in random fusion networks The energy scaling laws of multihop data fusion networks for distributed inference are considered. T...
  3. A large-deviation analysis for the maximum likelihood learning of tree structures The problem of maximum-likelihood learning of the structure of an unknown discrete distribution from...
  4. Detection error exponent for spatially dependent samples in random networks The problem of binary hypothesis testing is considered when the measurements are drawn from a Markov...
  5. Prize-Collecting Data Fusion for Cost-Performance Tradeoff in Distributed Inference A novel formulation for optimal sensor selection and in-network fusion for distributed inference kno...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.