Wednesday, July 30, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


MRI to X-ray mammography registration using a volume-preserving affine transformation.

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

Pertenece a: UCL University College London Eprints  

Descripción: X-ray mammography is routinely used in national screening programmes and as a clinical diagnostic tool. Magnetic Resonance Imaging (MRI) is commonly used as a complementary modality, providing functional information about the breast and a 3D image that can overcome ambiguities caused by the superimposition of fibro-glandular structures associated with X-ray imaging. Relating findings between these modalities is a challenging task however, due to the different imaging processes involved and the large deformation that the breast undergoes. In this work we present a registration method to determine spatial correspondence between pairs of MR and X-ray images of the breast, that is targeted for clinical use. We propose a generic registration framework which incorporates a volume-preserving affine transformation model and validate its performance using routinely acquired clinical data. Experiments on simulated mammograms from 8 volunteers produced a mean registration error of 3.8±1.6mm for a mean of 12 manually identified landmarks per volume. When validated using 57 lesions identified on routine clinical CC and MLO mammograms (n=113 registration tasks) from 49 subjects the median registration error was 13.1mm. When applied to the registration of an MR image to CC and MLO mammograms of a patient with a localisation clip, the mean error was 8.9mm. The results indicate that an intensity based registration algorithm, using a relatively simple transformation model, can provide radiologists with a clinically useful tool for breast cancer diagnosis.

Autor(es): Mertzanidou, T -  Hipwell, J -  Cardoso, MJ -  Zhang, X -  Tanner, C -  Ourselin, S -  Bick, U -  Huisman, H -  Karssemeijer, N -  Hawkes, D - 

Id.: 55229923

Idioma: eng  - 

Versión: 1.0

Estado: Final

Palabras claveAlgorithms, Breast Neoplasms, Female, Humans, Image Interpretation, Computer -  Assisted, Imaging, Three -  Dimensional, Magnetic Resonance Imaging, Mammography, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Subtraction Technique - 

Tipo de recurso: Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] Med Image Anal , 16 (5) 966 - 975. (2012)

Fecha de contribución: 13-ago-2013

Contacto:

Localización:


Otros recursos del mismo autor(es)

  1. Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data Many of the interesting physics processes to be measured at the LHC have a signature involving one o...
  2. Susceptibility artefact correction using dynamic graph cuts: Application to neurosurgery. Echo Planar Imaging (EPI) is routinely used in diffusion and functional MR imaging due to its rapid ...
  3. Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target. Chemicals targeting the liver stage (LS) of the malaria parasite are useful for causal prophylaxis o...
  4. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface
  5. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska ...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso