1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

X-ray mammography is routinely used in national screening programmes and as a clinical diagnostic tool. Magnetic Resonance Imaging (MRI) is commonly used as a complementary modality, providing functional information about the breast and a 3D image that can overcome ambiguities caused by the superimposition of fibro-glandular structures associated with X-ray imaging. Relating findings between these modalities is a challenging task however, due to the different imaging processes involved and the large deformation that the breast undergoes. In this work we present a registration method to determine spatial correspondence between pairs of MR and X-ray images of the breast, that is targeted for clinical use. We propose a generic registration framework which incorporates a volume-preserving affine transformation model and validate its performance using routinely acquired clinical data. Experiments on simulated mammograms from 8 volunteers produced a mean registration error of 3.8±1.6mm for a mean of 12 manually identified landmarks per volume. When validated using 57 lesions identified on routine clinical CC and MLO mammograms (n=113 registration tasks) from 49 subjects the median registration error was 13.1mm. When applied to the registration of an MR image to CC and MLO mammograms of a patient with a localisation clip, the mean error was 8.9mm. The results indicate that an intensity based registration algorithm, using a relatively simple transformation model, can provide radiologists with a clinically useful tool for breast cancer diagnosis.

Pertenece a

UCL University College London Eprints  

Autor(es)

Mertzanidou, T -  Hipwell, J -  Cardoso, MJ -  Zhang, X -  Tanner, C -  Ourselin, S -  Bick, U -  Huisman, H -  Karssemeijer, N -  Hawkes, D - 

Id.: 55229923

Idioma: eng  - 

Versión: 1.0

Estado: Final

Palabras claveAlgorithms, Breast Neoplasms, Female, Humans, Image Interpretation, Computer -  Assisted, Imaging, Three -  Dimensional, Magnetic Resonance Imaging, Mammography, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Subtraction Technique - 

Tipo de recurso: Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] Med Image Anal , 16 (5) 966 - 975. (2012)

Fecha de contribución: 13-ago-2013

Contacto:

Localización:

Otros recursos de la mismacolección

  1. Dissidence, Compromise and Submission in Higher Education Today
  2. An RRM-ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutate...
  3. The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: A randomised controlled trial BACKGROUND: Cognitive stimulation therapy (CST) is a well-established group psychosocial interventio...
  4. Controlling electronic access to the spin excitations of a single molecule in a tunnel junction Spintronic phenomena underpin new device paradigms for data storage and sensing. Scaling these down ...
  5. Bacterial survival following shock compression in the GigaPascal range The possibility that life can exist within previously unconsidered habitats is causing us to expand ...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.