1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


This paper investigates an implementation of an array of distributed neural networks, operating together to classify between unarmed and potentially armed personnel in areas under surveillance using ground based radar. Experimental data collected by the University College London (UCL) multistatic radar system NetRAD is analysed. Neural networks are applied to the extracted micro-Doppler data in order to classify between the two scenarios, and accuracy above 98% is demonstrated on the validation data, showing an improvement over methodologies based on classifiers where human intervention is required. The main advantage of using neural networks is the ability to bypass the manual extraction process of handcrafted features from the radar data, where thresholds and parameters need to be tuned by human operators. Different network architectures are explored, from feed-forward networks to stacked auto-encoders, with the advantages of deep topologies being capable of classifying the spectrograms (Doppler-time patterns) directly. Significant parameters concerning the actual deployment of the networks are also investigated, for example the dwell time (i.e. how long the radar needs to focus on a target in order to achieve classification), and the robustness of the networks in classifying data from new people, whose signatures were unseen during the training stage. Finally, a data ensembling technique is also presented which utilises a weighted decision approach, established beforehand, utilising information from all three sensors, and yielding stable classification accuracies of 99% or more, across all monitored zones.

Pertenece a



Patel, Jarez S. -  Fioranelli, Francesco -  Ritchie, Matthew -  Griffiths, Hugh - 

Id.: 70412951

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  text - 

Tipo de recurso: Articles  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  text - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://eprints.gla.ac.uk/151449/
[References] 10.1007/s12530-017-9208-6

Fecha de contribución: 29-nov-2017


* Patel, J. S. , Fioranelli, F. , Ritchie, M. and Griffiths, H. (2017) Multistatic radar classification of armed vs unarmed personnel using neural networks. Evolving Systems , (doi:10.1007/s12530-017-9208-6 ) (Early Online Publication)

Otros recursos del mismo autor(es)

  1. A Questionnaire on Materialisms Recent philosophical tendencies of “Actor-Network Theory,” “Object-Oriented Ontology,” and “Speculat...
  2. Personnel recognition and gait classification based on multistatic micro-doppler signatures using deep convolutional neural networks In this letter, we propose two methods for personnel recognition and gait classification using deep ...
  3. Gait Classification Based on Micro-Doppler Features This paper focuses on the classification of human gaits based on micro-Doppler signatures. The micro...
  4. Dynamic Hand Gesture Classification Based on Radar Micro-Doppler Signatures Dynamic hand gesture recognition is of great importance for human-computer interaction. In this pape...
  5. Multisensory Data Fusion for Human Activities Classification and Fall Detection Significant research exists on the use of wearable sensors in the context of assisted living for act...

Otros recursos de la mismacolección

  1. Vulnerability assessment and protective effects of coastal vegetation during the 2004 tsunami in Sri Lanka The tsunami of December 2004 caused extensive human and economic losses along many parts of the Sri ...
  2. Climate change, environmental degradation and migration Climate change will have a progressively increasing impact on environmental degradation and environm...
  3. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India With the increasing global legal and illegal trade of waste electrical and electronic equipment (WEE...
  4. Inactividad física y obesidad ¿cuál es su repercusión en el gasto económico de diabetes mellitus 2 en Chile? = Physical inactivity and obesity: What are the implications for diabetes expenditures in Chile? No abstract available.
  5. Understanding multiple thresholds of coupled social–ecological systems exposed to natural hazards as external shocks Societies and ecosystems worldwide are increasingly subjected to hazards of natural and anthropogeni...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.