1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


This paper investigates an implementation of an array of distributed neural networks, operating together to classify between unarmed and potentially armed personnel in areas under surveillance using ground based radar. Experimental data collected by the University College London (UCL) multistatic radar system NetRAD is analysed. Neural networks are applied to the extracted micro-Doppler data in order to classify between the two scenarios, and accuracy above 98% is demonstrated on the validation data, showing an improvement over methodologies based on classifiers where human intervention is required. The main advantage of using neural networks is the ability to bypass the manual extraction process of handcrafted features from the radar data, where thresholds and parameters need to be tuned by human operators. Different network architectures are explored, from feed-forward networks to stacked auto-encoders, with the advantages of deep topologies being capable of classifying the spectrograms (Doppler-time patterns) directly. Significant parameters concerning the actual deployment of the networks are also investigated, for example the dwell time (i.e. how long the radar needs to focus on a target in order to achieve classification), and the robustness of the networks in classifying data from new people, whose signatures were unseen during the training stage. Finally, a data ensembling technique is also presented which utilises a weighted decision approach, established beforehand, utilising information from all three sensors, and yielding stable classification accuracies of 99% or more, across all monitored zones.

Pertenece a



Patel, Jarez S. -  Fioranelli, Francesco -  Ritchie, Matthew -  Griffiths, Hugh - 

Id.: 70412951

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  text - 

Tipo de recurso: Articles  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  text - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://eprints.gla.ac.uk/151449/
[References] 10.1007/s12530-017-9208-6

Fecha de contribución: 10-jul-2018


* Patel, J. S. , Fioranelli, F. , Ritchie, M. and Griffiths, H. (2018) Multistatic radar classification of armed vs unarmed personnel using neural networks. Evolving Systems , 9(2), pp. 135-144. (doi:10.1007/s12530-017-9208-6 )

Otros recursos de la mismacolección

  1. $rec.titulo
  2. Buprenorphine added on brief cognitive behavioral therapy for treatment of methamphetamine use disorder Background: Methamphetamine (MA) use remains a major public health concern around the world. Recent ...
  3. Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at √s = 13 TeV with the ATLAS detector A search for new heavy particles that decay into top-quark pairs is performed using data collected f...
  4. Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector A search for pair production of up-type vector-like quarks (T ) with a significant branching ratio i...
  5. Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at √s = 13 TeV A search is conducted for a beyond-the-Standard-Model boson using events where a Higgs boson with ma...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.