1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation methods use a priori knowledge of the prostate shape. However, there is a large variation in prostate shape between patients. Our approach uses multispectral magnetic resonance imaging (MRI) data, containing T1, T2 and proton density (PD) weighted images and the distance from the voxel to the centroid of the prostate, together with statistical pattern classifiers. We investigated the performance of a parametric and a non-parametric classification approach by applying a Baysian-quadratic and a k-nearest-neighbor classifier respectively. An annotated data set is made by manual labeling of the image. Using this data set, the classifiers are trained and evaluated. sThe following results are obtained after three experiments. Firstly, using feature selection we showed that the average segmentation error rates are lowest when combining all three images and the distance with the k-nearest-neighbor classifier. Secondly, the confusion matrix showed that the k-nearest-neighbor classifier has the sensitivity. Finally, the prostate is segmented using both classifier. The segmentation boundaries approach the prostate boundaries for most slices. However, in some slices the segmentation result contained errors near the borders of the prostate. The current results showed that segmenting the prostate using multispectral MRI data combined with a statistical classifier is a promising method.

Pertenece a

University of Twente Publications  

Autor(es)

Maan, Bianca -  Heijden, Ferdi van der -  Fütterer, Jurgen J. - 

Id.: 55238660

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Article in monograph or in proceedings  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: © 2012 SPIE

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://doc.utwente.nl/80234/1/SPIE_article.pdf

Fecha de contribución: 26-oct-2016

Contacto:

Localización:

Otros recursos del mismo autor(es)

  1. Proceedings of the International Cancer Imaging Society (ICIS) 16th Annual Teaching Course: Glasgow, UK. 3–5 October 2016 Table of contents O1 Tumour heterogeneity: what does it mean? Dow-Mu Koh O2 Skeletal sequelae in adu...
  2. Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy Laser interstitial thermotherapy (LITT) is a relatively new focal therapy technique for the ablation...

Otros recursos de la mismacolección

No existen otros recursos

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.