1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation methods use a priori knowledge of the prostate shape. However, there is a large variation in prostate shape between patients. Our approach uses multispectral magnetic resonance imaging (MRI) data, containing T1, T2 and proton density (PD) weighted images and the distance from the voxel to the centroid of the prostate, together with statistical pattern classifiers. We investigated the performance of a parametric and a non-parametric classification approach by applying a Baysian-quadratic and a k-nearest-neighbor classifier respectively. An annotated data set is made by manual labeling of the image. Using this data set, the classifiers are trained and evaluated. sThe following results are obtained after three experiments. Firstly, using feature selection we showed that the average segmentation error rates are lowest when combining all three images and the distance with the k-nearest-neighbor classifier. Secondly, the confusion matrix showed that the k-nearest-neighbor classifier has the sensitivity. Finally, the prostate is segmented using both classifier. The segmentation boundaries approach the prostate boundaries for most slices. However, in some slices the segmentation result contained errors near the borders of the prostate. The current results showed that segmenting the prostate using multispectral MRI data combined with a statistical classifier is a promising method.

Pertenece a

University of Twente Publications  


Maan, Bianca -  Heijden, Ferdi van der -  Fütterer, Jurgen J. - 

Id.: 55238660

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Article in monograph or in proceedings  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: © 2012 SPIE

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://doc.utwente.nl/80234/1/SPIE_article.pdf

Fecha de contribución: 26-oct-2016



Otros recursos de la misma colección

  1. Using attack-defense trees to analyze threats and countermeasures in an ATM: a case study Securing automated teller machines (ATMs), as critical and complex infrastructure, requires a precis...
  2. Towards empirical evaluation of automated risk assessment methods Security risk assessment methods are numerous, and it might be confusing for organizations to select...
  3. Analysing non-malicious threats to urban smart grids by interrelating threats and threat taxonomies A comprehensive study of the smart grid threat landscape is important for designing resilient urban ...
  4. Self-management of hybrid networks – hidden costs due to TCP performance problems Self-management is one of the most popular research topics in network and systems management. Little...
  5. Using network analysis to discover cooperation opportunities in inter-organizational networks In a network of organizations, members are often faced with the problem of choosing partners for clo...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.