Friday, May 22, 2015

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


A new prostate segmentation approach using multispectral magnetic resonance imaging and a statistical pattern classifier

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso

Detalles del recurso

Pertenece a: University of Twente Publications  

Descripción: Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation methods use a priori knowledge of the prostate shape. However, there is a large variation in prostate shape between patients. Our approach uses multispectral magnetic resonance imaging (MRI) data, containing T1, T2 and proton density (PD) weighted images and the distance from the voxel to the centroid of the prostate, together with statistical pattern classifiers. We investigated the performance of a parametric and a non-parametric classification approach by applying a Baysian-quadratic and a k-nearest-neighbor classifier respectively. An annotated data set is made by manual labeling of the image. Using this data set, the classifiers are trained and evaluated. sThe following results are obtained after three experiments. Firstly, using feature selection we showed that the average segmentation error rates are lowest when combining all three images and the distance with the k-nearest-neighbor classifier. Secondly, the confusion matrix showed that the k-nearest-neighbor classifier has the sensitivity. Finally, the prostate is segmented using both classifier. The segmentation boundaries approach the prostate boundaries for most slices. However, in some slices the segmentation result contained errors near the borders of the prostate. The current results showed that segmenting the prostate using multispectral MRI data combined with a statistical classifier is a promising method.

Autor(es): Maan, Bianca -  Heijden van der, Ferdi -  Fütterer, Jurgen J. - 

Id.: 55238660

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Article in monograph or in proceedings  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: © 2012 SPIE

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://doc.utwente.nl/80234/1/SPIE_article.pdf

Fecha de contribución: 04-may-2012

Contacto:

Localización:


Otros recursos de la misma colección

  1. Results of a survey among GP practices on how they manage patient safety aspects related to point-of-care testing in every day practice Background Point-of-care (POC) tests are devices or test strips that can be used near or at the site...
  2. Using diffusion of innovation theory to understand the factors impacting patient acceptance and use of consumer e-health innovations: a case study in a primary care clinic Background Consumer e-Health is a potential solution to the problems of accessibility, quality and ...
  3. Resonance properties of tidal channels with multiple retention basisn: role of adjacent sea We present an idealised model of the tidal response in a main channel with multiple secondary basins...
  4. Resonance properties of a closed rotating rectangular basin subject to space- and time-dependent wind forcing We present an idealised process-based model to study the possibly resonant response of closed basins...
  5. Aircraft Icing in Flight: Effects of Impact of Supercooled Large Droplets

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso