Wednesday, July 23, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


A new prostate segmentation approach using multispectral magnetic resonance imaging and a statistical pattern classifier

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso

Detalles del recurso

$msg.ficha_linkToArchive: University of Twente Publications  

$msg.ficha_details_description: Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation methods use a priori knowledge of the prostate shape. However, there is a large variation in prostate shape between patients. Our approach uses multispectral magnetic resonance imaging (MRI) data, containing T1, T2 and proton density (PD) weighted images and the distance from the voxel to the centroid of the prostate, together with statistical pattern classifiers. We investigated the performance of a parametric and a non-parametric classification approach by applying a Baysian-quadratic and a k-nearest-neighbor classifier respectively. An annotated data set is made by manual labeling of the image. Using this data set, the classifiers are trained and evaluated. sThe following results are obtained after three experiments. Firstly, using feature selection we showed that the average segmentation error rates are lowest when combining all three images and the distance with the k-nearest-neighbor classifier. Secondly, the confusion matrix showed that the k-nearest-neighbor classifier has the sensitivity. Finally, the prostate is segmented using both classifier. The segmentation boundaries approach the prostate boundaries for most slices. However, in some slices the segmentation result contained errors near the borders of the prostate. The current results showed that segmenting the prostate using multispectral MRI data combined with a statistical classifier is a promising method.

$msg.ficha_details_authors: Maan, Bianca -  Heijden van der, Ferdi -  Fütterer, Jurgen J. - 

$msg.ficha_details_id: 55238660

$msg.ficha_details_version: 1.0

$msg.ficha_details_status: Final

$msg.ficha_details_type:  application/pdf - 

$msg.ficha_details_learningresourcetype: Article in monograph or in proceedings  - 

$msg.ficha_details_interactivitytype: Expositivo

$msg.ficha_details_interactivitylevel: muy bajo

$msg.ficha_details_intendedenduserrole: Estudiante  -  Profesor  -  Autor  - 

$msg.ficha_details_structure: Atomic

$msg.ficha_details_cost: no

$msg.ficha_details_copyright: sí

: © 2012 SPIE

$msg.ficha_details_formats:  application/pdf - 

$msg.ficha_details_requirements:  Browser: Any - 

$msg.ficha_details_relation: [References] http://doc.utwente.nl/80234/1/SPIE_article.pdf

$msg.ficha_details_submissiondate: 04-may-2012

$msg.ficha_details_contact:

$msg.ficha_details_location:


$msg.ficha_otrosRecursos_autor

  1. FELD better not thinking of metastases only when liver lesions appear after bleomycin-based treatment for non-seminoma testis from metastases
  2. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI...
  3. A pictorial overview of pubovisceral muscle avulsions on pelvic floor magnetic resonance imaging
  4. Prostate MR image segmentation using 3D active appearance models This paper presents a method for automatic segmentation of the prostate from transversal T2-weighted...
  5. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation The use of an ultrasound probe or a needle guide during biopsy deforms both the rectal wall and the ...

$msg.ficha_otrosRecursos_mismaColeccion

  1. Numerical Simulation of Tyre Road Noise
  2. The effectiveness of a mediation program in symmetrical versus asymmetrical neighbor-to-neighbor conflicts
  3. Blind equalization for underwater communications Underwater wireless (sensor) networks would vastly improve man's ability to explore and exploit remo...
  4. Evaluation of the FWF Doctoral Programme (DK Programme)
  5. Developing resilience signals for the Dutch railway system A resilience state model for a railway system is proposed consisting of three boundaries putting pre...

$msg.ficha_comments_title

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

$msg.home_busque