1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We compute the $\operatorname{Pin}(2)$ -equivariant monopole Floer homology for the class of plumbed 3-manifolds considered by Ozsváth and Szabó [18]. We show that for these manifolds, the $\operatorname{Pin}(2)$ -equivariant monopole Floer homology can be calculated in terms of the Heegaard Floer/monopole Floer lattice complex defined by Némethi [15]. Moreover, we prove that in such cases the ranks of the usual monopole Floer homology groups suffice to determine both the Manolescu correction terms and the $\operatorname{Pin}(2)$ -homology as an Abelian group. As an application, we show that $\beta(-Y,s)=\bar{\mu}(Y,s)$ for all plumbed 3-manifolds with at most one “bad” vertex, proving (an analogue of) a conjecture posed by Manolescu [12]. Our proof also generalizes results by Stipsicz [21] and Ue [26] relating $\bar{\mu}$ with the Ozsváth–Szabó $d$ -invariant. Some observations aimed at extending our computations to manifolds with more than one bad vertex are included at the end of the paper.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Dai, Irving - 

Id.: 71305353

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras clave57R58 - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2018 The University of Michigan

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0026-2285
[References] 1945-2365

Fecha de contribución: 13-may-2018

Contacto:

Localización:
* Michigan Math. J. 67, iss. 2 (2018), 423-447
* doi:10.1307/mmj/1523498585

Otros recursos que te pueden interesar

  1. On Link Homology Theories from Extended Cobordisms This paper is devoted to the study of algebraic structures leading to link homology theories. The or...
  2. A Remark on $\operatorname{Pin}(2)$ -Equivariant Floer Homology In this remark, we show how the monopole Frøyshov invariant, as well as the analogues of the Involut...

Otros recursos de la mismacolección

  1. Legendrian Lens Space Surgeries We show that every tight contact structure on any of the lens spaces $L(ns^{2}-s+1,s^{2})$ with $n\g...
  2. Diophantine Approximation Constants for Varieties over Function Fields By analogy with the program of McKinnon and Roth [10], we define and study approximation constants f...
  3. Givental-Type Reconstruction at a Nonsemisimple Point We consider the orbifold curve that is a quotient of an elliptic curve $\mathcal{E}$ by a cyclic gro...
  4. Characterization of Aleksandrov Spaces of Curvature Bounded Above by Means of the Metric Cauchy–Schwarz Inequality We consider the previously introduced notion of the $K$ -quadrilateral cosine, which is the cosine u...
  5. Multiple Lerch Zeta Functions and an Idea of Ramanujan In this article, we derive meromorphic continuation of multiple Lerch zeta functions by generalizing...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.