1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Saumard, Adrien - 

Id.: 55207165

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679

Otros recursos del mismo autor(es)

  1. Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases We investigate the optimality for model selection of the so-calledslope heuristics, $V$-fold cross-v...
  2. Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases We investigate the optimality for model selection of the so-called slope heuristics, V-fold cross-va...
  3. On optimality of empirical risk minimization in linear aggregation 37 pages
  4. On optimality of empirical risk minimization in linear aggregation 37 pages
  5. Optimal model selection in heteroscedastic regression using piecewise polynomials We consider the estimation of a regression function with random design and heteroscedastic noise in ...

Otros recursos de la mismacolección

  1. Adaptive density estimation based on a mixture of Gammas We consider the problem of Bayesian density estimation on the positive semiline for possibly unbound...
  2. Estimating a smooth function on a large graph by Bayesian Laplacian regularisation We study a Bayesian approach to estimating a smooth function in the context of regression or classif...
  3. A test of Gaussianity based on the Euler characteristic of excursion sets In the present paper, we deal with a stationary isotropic random field $X:{\mathbb{R}}^{d}\to{\mathb...
  4. Model selection for the segmentation of multiparameter exponential family distributions We consider the segmentation problem of univariate distributions from the exponential family with mu...
  5. Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators For the problem of high-dimensional sparse linear regression, it is known that an $\ell_{0}$-based e...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.