Sunday, December 21, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso

Detalles del recurso

$msg.ficha_linkToArchive: Project Euclid (Hosted at Cornell University Library)  

$msg.ficha_details_description: We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

$msg.ficha_details_authors: Saumard, Adrien - 

$msg.ficha_details_id: 55207165

$msg.ficha_details_language: English  - 

$msg.ficha_details_version: 1.0

$msg.ficha_details_status: Final

$msg.ficha_details_type:  application/pdf - 

$msg.ficha_details_keywordsLeast -  squares regression - 

$msg.ficha_details_learningresourcetype: Text  - 

$msg.ficha_details_interactivitytype: Expositivo

$msg.ficha_details_interactivitylevel: muy bajo

$msg.ficha_details_intendedenduserrole: Estudiante  -  Profesor  -  Autor  - 

$msg.ficha_details_structure: Atomic

$msg.ficha_details_cost: no

$msg.ficha_details_copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

$msg.ficha_details_formats:  application/pdf - 

$msg.ficha_details_requirements:  Browser: Any - 

$msg.ficha_details_relation: [References] 1935-7524

$msg.ficha_details_submissiondate: 26-ene-2013

$msg.ficha_details_contact:

$msg.ficha_details_location:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679


$msg.ficha_otrosRecursos_autor

  1. Log-concavity and strong log-concavity: A review We review and formulate results concerning log-concavity and strong-log-concavity in both discrete a...
  2. Optimal model selection in heteroscedastic regression using piecewise polynomial functions We consider the estimation of a regression function with random design and heteroscedastic noise in ...

$msg.ficha_otrosRecursos_mismaColeccion

  1. Copula calibration We propose notions of calibration for probabilistic forecasts of general multivariate quantities. Pr...
  2. The horseshoe estimator: Posterior concentration around nearly black vectors We consider the horseshoe estimator due to Carvalho, Polson and Scott (2010) for the multivariate no...
  3. A Kolmogorov-Smirnov type test for independence between marks and points of marked point processes Marked point processes are commonly used stochastic models for representing a finite number of natur...
  4. Nonparametric conditional density estimation for censored data based on a recursive kernel Consider a regression model in which the response is subject to random right censoring. The main goa...
  5. A quantile varying-coefficient regression approach to length-biased data modeling Recent years have seen a growing body of literature on the analysis of length-biased data. Much of t...

$msg.ficha_comments_title

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

$msg.home_busque