1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Saumard, Adrien - 

Id.: 55207165

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679

Otros recursos de la misma colección

  1. Rates of convergence for robust geometric inference Distances to compact sets are widely used in the field of Topological Data Analysis for inferring ge...
  2. Hypothesis testing via affine detectors In this paper, we further develop the approach, originating in [13], to “computation-friendly” hypot...
  3. Innovation, growth and aggregate volatility from a Bayesian nonparametric perspective In this paper we consider the problem of uncertainty related to growth through innovations. We study...
  4. Bootstrap uniform central limit theorems for Harris recurrent Markov chains The main objective of this paper is to establish bootstrap uniform functional central limit theorem ...
  5. Thresholding least-squares inference in high-dimensional regression models We propose a thresholding least-squares method of inference for high-dimensional regression models w...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.