Friday, January 30, 2015

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso

Detalles del recurso

Pertenece a: Project Euclid (Hosted at Cornell University Library)  

Descripción: We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Autor(es): Saumard, Adrien - 

Id.: 55207165

Idioma: English  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679


Otros recursos del mismo autor(es)

  1. Log-concavity and strong log-concavity: A review We review and formulate results concerning log-concavity and strong-log-concavity in both discrete a...
  2. Optimal model selection in heteroscedastic regression using piecewise polynomial functions We consider the estimation of a regression function with random design and heteroscedastic noise in ...

Otros recursos de la misma colección

  1. Nonparametric estimation of a maximum of quantiles A simulation model of a complex system is considered, for which the outcome is described by $m(p,X)$...
  2. Integrated Cumulative Error (ICE) distance for non-nested mixture model selection: Application to extreme values in metal fatigue problems In this paper, we consider the problem of selecting the most appropriate model, amongst a given coll...
  3. Bounding the maximum of dependent random variables Let $M_{n}$ be the maximum of $n$ unit Gaussian variables $X_{1},\ldots,X_{n}$ with correlation matr...
  4. Critical dimension in profile semiparametric estimation This paper revisits the classical inference results for profile quasi maximum likelihood estimators ...
  5. Exact prior-free probabilistic inference on the heritability coefficient in a linear mixed model Linear mixed-effect models with two variance components are often used when variability comes from t...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso