1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Saumard, Adrien - 

Id.: 55207165

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679

Otros recursos de la misma colección

  1. Classification with asymmetric label noise: Consistency and maximal denoising In many real-world classification problems, the labels of training examples are randomly corrupted. ...
  2. Bayesian degree-corrected stochastic blockmodels for community detection Community detection in networks has drawn much attention in diverse fields, especially social scienc...
  3. Estimation of low rank density matrices: Bounds in Schatten norms and other distances Let $\mathcal{S}_{m}$ be the set of all $m\times m$ density matrices (Hermitian positively semi-defi...
  4. Tree-based censored regression with applications in insurance We propose a regression tree procedure to estimate the conditional distribution of a variable which ...
  5. Exact asymptotics for the scan statistic and fast alternatives We consider the problem of detecting a rectangle of activation in a grid of sensors in $d$-dimension...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.