1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Saumard, Adrien - 

Id.: 55207165

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013


* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679

Otros recursos del mismo autor(es)

  1. Efficiency of the V-fold model selection for localized bases Many interesting functional bases, such as piecewise polynomials or wavelets, are examples of locali...
  2. Sélection de modèles optimale par pénalité de rééchantillonnage pour des M-estimateurs à contraste régulier. International audience
  3. On optimality of empirical risk minimization in linear aggregation 37 pages
  4. On optimality of empirical risk minimization in linear aggregation 37 pages
  5. Optimal model selection in heteroscedastic regression using piecewise polynomials We consider the estimation of a regression function with random design and heteroscedastic noise in ...

Otros recursos de la mismacolección

  1. Locally stationary functional time series The literature on time series of functional data has focused on processes of which the probabilistic...
  2. On misspecifications in regularity and properties of estimators The problem of parameter estimation by the continuous time observations of a deterministic signal in...
  3. Confidence intervals for the means of the selected populations Consider an experiment in which $p$ independent populations $\pi_{i}$ with corresponding unknown mea...
  4. Change detection via affine and quadratic detectors The goal of the paper is to develop a specific application of the convex optimization based hypothes...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.