Friday, May 29, 2015

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso

Detalles del recurso

Pertenece a: Project Euclid (Hosted at Cornell University Library)  

Descripción: We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.

Autor(es): Saumard, Adrien - 

Id.: 55207165

Idioma: English  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveLeast -  squares regression - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1935-7524

Fecha de contribución: 26-ene-2013

Contacto:

Localización:
* Electron. J. Statist. 6 (2012), 579-655
* doi:10.1214/12-EJS679


Otros recursos del mismo autor(es)

  1. OPTIMAL MODEL SELECTION IN HETEROSCEDASTIC REGRESSION USING STRONGLY LOCALISED BASES We investigate optimality of model selection procedures in regard to the least-squares loss in a het...
  2. Nonasymptotic quasi-optimality of AIC and the slope heuristics in maximum likelihood estimation of density using histogram models 48 p.
  3. $rec.titulo
  4. Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression 58p.
  5. Log-concavity and strong log-concavity: A review We review and formulate results concerning log-concavity and strong-log-concavity in both discrete a...

Otros recursos de la misma colección

  1. Adaptive Laguerre density estimation for mixed Poisson models In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensi...
  2. Data enriched linear regression We present a linear regression method for predictions on a small data set making use of a second pos...
  3. Estimation and model selection for model-based clustering with the conditional classification likelihood The Integrated Completed Likelihood (ICL) criterion was introduced by Biernacki, Celeux and Govaert ...
  4. Influence function analysis of the restricted minimum divergence estimators: A general form The minimum divergence estimators have proved to be useful tools in the area of robust inference. Th...
  5. Variance estimator for fractional diffusions with variance and drift depending on time We propose punctual and functional estimators for the local variance of pseudo-diffusions driven by ...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso