1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

An ideal system of $n$ qubits has $2^n$ dimensions. This exponential grants power, but also hinders characterizing the system's state and dynamics. We study a new problem: the qubits in a physical system might not be independent. They can "overlap," in the sense that an operation on one qubit slightly affects the others. We show that allowing for slight overlaps, $n$ qubits can fit in just polynomially many dimensions. (Defined in a natural way, all pairwise overlaps can be $\leq \epsilon$ in $n^{O(1/\epsilon^2)}$ dimensions.) Thus, even before considering issues like noise, a real system of $n$ qubits might inherently lack any potential for exponential power. On the other hand, we also provide an efficient test to certify exponential dimensionality. Unfortunately, the test is sensitive to noise. It is important to devise more robust tests on the arrangements of qubits in quantum devices.

Pertenece a

Caltech Authors  

Autor(es)

Chao, Rui -  Reichardt, Ben W. -  Sutherland, Chris -  Vidick, Thomas - 

Id.: 70131475

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Tipo de recurso: Report or Paper  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechAUTHORS:20171011-113818136
[References] https://authors.library.caltech.edu/82284/

Fecha de contribución: 12-oct-2017

Contacto:

Localización:
* Chao, Rui and Reichardt, Ben W. and Sutherland, Chris and Vidick, Thomas (2017) Overlapping qubits. . (Submitted) http://resolver.caltech.edu/CaltechAUTHORS:20171011-113818136

Otros recursos del mismo autor(es)

  1. QCMA hardness of ground space connectivity for commuting Hamiltonians In this work we consider the ground space connectivity problem for commuting local Hamiltonians. The...
  2. A quantum linearity test for robustly verifying entanglement We introduce a simple two-player test which certifies that the players apply tensor products of Paul...
  3. Hardness amplification for entangled games via anchoring We study the parallel repetition of one-round games involving players that can use quantum entanglem...
  4. Rigorous renormalization group method for ground space and low-energy states of local Hamiltonians The practical success of polynomial-time tensor network methods for computing ground states of certa...
  5. Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games The study of quantum-mechanical violations of Bell inequalities is motivated by the investigation, a...

Otros recursos de la mismacolección

  1. A Stochastic Solution Concept for n-Person Games Let X be a set of outcomes among which a set of N players, each having a preference relation on X, m...
  2. Pairwise Symmetry Conditions for Voting Equilibria Necessary conditions are established for a point contained in the interior or boundary of a convex f...
  3. Municipal Incorporation Under LAFCO: A Critical View How well have the LAFCO board and staff responded to the challenge of rationalizing the process of m...
  4. Transitive Permutation Groups and Equipotent Voting Rules Let F a two-alternative voting rule and GF the subgroup of permutations of the voters under which F ...
  5. Continuous-Valued Binary Decision Procedures Conditions have been given elsewhere which guarantee that binary decision procedures have a simple s...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.