1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


We consider estimation of and inference about coefficients on endogenous variables in a linear instrumental variables model where the number of instruments and exogenous control variables are each allowed to be larger than the sample size. We work within an approximately sparse framework that maintains that the signal available in the instruments and control variables may be effectively captured by a small number of the available variables. We provide a LASSO-based method for this setting which provides uniformly valid inference about the coefficients on endogenous variables. We illustrate the method through an application to demand estimation.

Pertenece a

DSpace at MIT  


Hansen, Christian -  Spindler, Martin -  Chernozhukov, Victor V - 

Id.: 69926447

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Tipo de recurso: Article  -  http://purl.org/eprint/type/JournalArticle  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] American Economic Association
[References] http://dx.doi.org/10.1257/aer.p20151022
[References] American Economic Review

Fecha de contribución: 29-ago-2017


* 0002-8282
* Chernozhukov, Victor, Christian Hansen, and Martin Spindler. “ Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments .” American Economic Review 105, no. 5 (May 2015): 486–490. © 2017 American Economic Association.

Otros recursos del mismo autor(es)

  1. Gaussian approximation of suprema of empirical processes This paper develops a new direct approach to approximating suprema of general empirical processes by...
  2. Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems We develop uniformly valid confidence regions for regression coefficients in a highdimensional spars...
  3. Inference on sets in finance We consider the problem of inference on a class of sets describing a collection of admissible models...
  4. Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach We present an expository, general analysis of valid post-selection or post-regularization inference ...
  5. A lava attack on the recovery of sums of dense and sparse signals Common high-dimensional methods for prediction rely on having either a sparse signal model, a model ...

Otros recursos de la mismacolección

  1. An Experimental and Modeling Study of Vacuum Residue Upgrading in Supercritical Water Arabian Heavy crude oil was fractionated into distillate and vacuum residue fractions. The vacuum re...
  2. Iterative Regularization via Dual Diagonal Descent In the context of linear inverse problems, we propose and study a general iterative regularization m...
  3. Preheating after multifield inflation with nonminimal couplings. III. Dynamical spacetime results This paper concludes our semianalytic study of preheating in inflationary models comprised of multip...
  4. Host genetic variation and its microbiome interactions within the Human Microbiome Project Background: Despite the increasing recognition that microbial communities within the human body are ...
  5. On the character of certain tilting modules Let G be a semisimple group over an algebraically closed field of characteristic p > 0. We give a (p...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.