1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

We consider estimation of and inference about coefficients on endogenous variables in a linear instrumental variables model where the number of instruments and exogenous control variables are each allowed to be larger than the sample size. We work within an approximately sparse framework that maintains that the signal available in the instruments and control variables may be effectively captured by a small number of the available variables. We provide a LASSO-based method for this setting which provides uniformly valid inference about the coefficients on endogenous variables. We illustrate the method through an application to demand estimation.

Pertenece a

DSpace at MIT  

Autor(es)

Hansen, Christian -  Spindler, Martin -  Chernozhukov, Victor V - 

Id.: 69926447

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Tipo de recurso: Article  -  http://purl.org/eprint/type/JournalArticle  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] American Economic Association
[References] http://dx.doi.org/10.1257/aer.p20151022
[References] American Economic Review

Fecha de contribución: 29-ago-2017

Contacto:

Localización:
* 0002-8282
* Chernozhukov, Victor, Christian Hansen, and Martin Spindler. “ Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments .” American Economic Review 105, no. 5 (May 2015): 486–490. © 2017 American Economic Association.
* PUBLISHER_POLICY

Otros recursos del mismo autor(es)

  1. High dimensional problems in econometrics The technological innovations in information processing and the increased storage capability have ma...
  2. Quantile regression with censoring and endogeneity In this paper we develop a new censored quantile instrumental variable (CQIV) estimator and describe...
  3. Multiple batch experiments toto investigate Li and B partitioning and isotope fractionation between rock and water during serpentinization Multiple batch experiments (100 °C, 200 °C; 40 MPa) were conducted, using Dickson-type reactors, to ...
  4. Posterior inference in curved exponential families under increasing dimensions In this paper, we study the large-sample properties of the posterior-based inference in the curved e...
  5. Inference in High-Dimensional Panel Models With an Application to Gun Control We consider estimation and inference in panel data models with additive unobserved individual specif...

Otros recursos de la mismacolección

  1. Eta forms and the odd pseudodifferential families index Let A(t) be an elliptic, product-type suspended (which is to say parameter-dependant in a symbolic w...
  2. Adiabatic Limit, Heat Kernel and Analytic Torsion We study the uniform behavior of the heat kernel under the adiabatic limit using microlocal analysis...
  3. Boundary Behaviour of Weil–Petersson and Fibre Metrics for Riemann Moduli Spaces The Weil–Petersson and Takhtajan–Zograf metrics on the Riemann moduli spaces of complex structures f...
  4. Geometry of pseudodifferential algebra bundles and Fourier integral operators We study the geometry and topology of (filtered) algebra bundles Ψ ℤ over a smooth manifold X with t...
  5. Stellar Wakes from Dark Matter Subhalos We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Mi...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.