1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Detalles del recurso

Descripción

We continue our study of the inventory accumulation introduced by Sheffield (2011), which encodes a random planar map decorated by a collection of loops sampled from the critical Fortuin-Kasteleyn (FK) model. We prove various local estimates for the inventory accumulation model, i.e., estimates for the precise number of symbols of a given type in a reduced word sampled from the model. Using our estimates, we obtain the scaling limit of the associated two-dimensional random walk conditioned on the event that it stays in the first quadrant for one unit of time and ends up at a particular position in the interior of the first quadrant. We also obtain the exponent for the probability that a word of length $2n$ sampled from the inventory accumulation model corresponds to an empty reduced word, which is equivalent to an asymptotic formula for the partition function of the critical FK planar map model. The estimates of this paper will be used in a subsequent paper to obtain the scaling limit of the lattice walk associated with a finite-volume FK planar map.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Gwynne, Ewain -  Sun, Xin - 

Id.: 69834643

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveFortuin -  Kasteleyn model - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 The Institute of Mathematical Statistics and the Bernoulli Society

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1083-6489

Fecha de contribución: 17-mar-2018

Contacto:

Localización:
* Electron. J. Probab.
* doi:10.1214/17-EJP64

Otros recursos de la mismacolección

  1. On the Liouville heat kernel for $k$-coarse MBRW We study the Liouville heat kernel (in the $L^2$ phase) associated with a class of logarithmically c...
  2. Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics We study two-valued local sets, $\mathbb{A} _{-a,b}$, of the two-dimensional continuum Gaussian free...
  3. The argmin process of random walks, Brownian motion and Lévy processes In this paper we investigate the argmin process of Brownian motion $B$ defined by $\alpha _t:=\sup \...
  4. Dynamical freezing in a spin glass system with logarithmic correlations We consider a continuous time random walk on the two-dimensional discrete torus, whose motion is gov...
  5. Sample path properties of permanental processes Let $X_{\alpha }=\{X_{\alpha }(t),t\in{\cal T} \}$, $\alpha >0$, be an $\alpha $-permanental process...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.