1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


We continue our study of the inventory accumulation introduced by Sheffield (2011), which encodes a random planar map decorated by a collection of loops sampled from the critical Fortuin-Kasteleyn (FK) model. We prove various local estimates for the inventory accumulation model, i.e., estimates for the precise number of symbols of a given type in a reduced word sampled from the model. Using our estimates, we obtain the scaling limit of the associated two-dimensional random walk conditioned on the event that it stays in the first quadrant for one unit of time and ends up at a particular position in the interior of the first quadrant. We also obtain the exponent for the probability that a word of length $2n$ sampled from the inventory accumulation model corresponds to an empty reduced word, which is equivalent to an asymptotic formula for the partition function of the critical FK planar map model. The estimates of this paper will be used in a subsequent paper to obtain the scaling limit of the lattice walk associated with a finite-volume FK planar map.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  


Gwynne, Ewain -  Sun, Xin - 

Id.: 69834643

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveFortuin -  Kasteleyn model - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2017 The Institute of Mathematical Statistics and the Bernoulli Society

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 1083-6489

Fecha de contribución: 17-sep-2017


* Electron. J. Probab.
* doi:10.1214/17-EJP64

Otros recursos del mismo autor(es)

  1. Focal choroidal excavation: a preliminary interpretation based on clinic and review
  2. Ergodicity of the Airy line ensemble In this paper, we establish the ergodicity of the Airy line ensemble with respect to horizontal shif...
  3. Fluctuations of eigenvalues for random Toeplitz and related matrices Consider random symmetric Toeplitz matrices Tn=(ai−j)[superscript n]i,j=1 with matrix entries aj,j=0...
  4. Clinical Analysis of Thyroid Carcinoma Showing Thymus-Like Differentiation: Report of 8 Cases Thyroid carcinoma showing thymus-like differentiation (CASTLE) is a kind of rare neoplasm of the thy...
  5. The Setpoint Study (ACTG A5217): Effect of Immediate Versus Deferred Antiretroviral Therapy on Virologic Set Point in Recently HIV-1–Infected Individuals (See the editorial commentary by Tossonian and Conway, on pages 10–12.)

Otros recursos de la mismacolección

  1. Path large deviations for interacting diffusions with local mean-field interactions in random environment We consider a system of $N^{d}$ spins in random environment with a random local mean-field type inte...
  2. On the chemical distance in critical percolation We consider two-dimensional critical bond percolation. Conditioned on the existence of an open circu...
  3. Limiting empirical distribution of zeros and critical points of random polynomials agree in general In this article, we study critical points (zeros of derivative) of random polynomials. Take two dete...
  4. On explicit approximations for Lévy driven SDEs with super-linear diffusion coefficients Motivated by the results of [21], we propose explicit Euler-type schemes for SDEs with random coeffi...
  5. On uniqueness and blowup properties for a class of second order SDEs As the first step for approaching the uniqueness and blowup properties of the solutions of the stoch...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.