1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

One of the major applications of wireless sensor networks is to sense accurate and reliable data from the physical environment with or without a priori knowledge of data statistics. To extract accurate data from the physical environment, we investigate spatial data correlation among sensor nodes to develop data accuracy models. We propose three data accuracy models namely Estimated Data Accuracy (EDA) model, Cluster based Data Accuracy (CDA) model and Distributed Cluster based Data Accuracy (DCDA) model with a priori knowledge of data statistics. Due to the deployment of high density of sensor nodes, observed data are highly correlated among sensor nodes which form distributed clusters in space. We describe two clustering algorithms called Deterministic Distributed Clustering (DDC) algorithm and Spatial Data Correlation based Distributed Clustering (SDCDC) algorithm implemented under CDA model and DCDA model respectively. Moreover, due to data correlation in the network, it has redundancy in data collected by sensor nodes. Hence, it is not necessary for all sensor nodes to transmit their highly correlated data to the central node (sink node or cluster head node). Even an optimal set of sensor nodes are capable of measuring accurate data and transmitting the accurate, precise data to the central node. This reduces data redundancy, energy consumption and data transmission cost to increase the lifetime of sensor networks. Finally, we propose a fourth accuracy model called Adaptive Data Accuracy (ADA) model that doesn't require any a priori knowledge of data statistics. ADA model can sense continuous data stream at regular time intervals to estimate accurate data from the environment and select an optimal set of sensor nodes for data transmission to the network. Data transmission can be further reduced for these optimal sensor nodes by transmitting a subset of sensor data using a methodology called Spatio-Temporal Data Prediction (STDP) model under data reduction strategies. Furthermore, we implement data accuracy model when the network is under a threat of malicious attack.

Pertenece a

ETD at Indian Institute of Science  

Autor(es)

Karjee, Jyotirmoy - 

Id.: 70989606

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Palabras claveWireless Sensor Networks - 

Tipo de recurso: Thesis  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Requerimientos técnicos:  Browser: Any - 

Relación: [References] G26391

Fecha de contribución: 11-feb-2018

Contacto:

Localización:

Otros recursos de la mismacolección

  1. Resource Allocation in Wireless Networks for Secure Transmission and Utility Maximization Resource allocation in wireless networks is one of the most studied class of problems. Generally, th...
  2. Wireless and Social Networks : Some Challenges and Insights Wireless networks have potential applications in wireless Internet connectivity, battlefields, disas...
  3. Content Distribution in Social Groups We study Social Groups consisting of self-interested inter-connected nodes looking for common conten...
  4. Capacity and Life Estimation of Flooded Lead Acid Batteries using Eddy Current Sensors Lead acid batteries are widely used in domestic, industrial and automotive applications. Even after ...
  5. Architecture and Design of Wide Band Spectrum Sensing Receiver for Cognitive Radio Systems To explore spectral opportunities in wideband regime for cognitive radio we need a wideband spectrum...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.