1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


Time series are an important data class that includes recordings ranging from radio emissions, seismic activity, global positioning data, and stock prices to EEG measurements, vital signs, and voice recordings. Rapid growth in sensor and recording technologies is increasing the production of time series data and the importance of rapid, accurate analyses. Time series data are commonly analyzed using time-varying spectral methods to characterize their nonstationary and often oscillatory structure. Current methods provide local estimates of data features. However, they do not offer a statistical inference framework that applies to the entire time series. The important advances that we report are state-space multitaper (SS-MT) methods, which provide a statistical inference framework for time-varying spectral analysis of nonstationary time series. We model nonstationary time series as a sequence of second-order stationary Gaussian processes defined on nonoverlapping intervals. We use a frequency-domain random-walk model to relate the spectral representations of the Gaussian processes across intervals. The SS-MT algorithm efficiently computes spectral updates using parallel 1D complex Kalman filters. An expectation–maximization algorithm computes static and dynamic model parameter estimates. We test the framework in time-varying spectral analyses of simulated time series and EEG recordings from patients receiving general anesthesia. Relative to standard multitaper (MT), SS-MT gave enhanced spectral resolution and noise reduction (>10 dB) and allowed statistical comparisons of spectral properties among arbitrary time series segments. SS-MT also extracts time-domain estimates of signal components. The SS-MT paradigm is a broadly applicable, empirical Bayes’ framework for statistical inference that can help ensure accurate, reproducible findings from nonstationary time series analyses.

Pertenece a

Digital Access to Scholarship at Harvard  


Kim, Seong -  Eun -  Behr, Michael K. -  Ba, Demba -  Brown, Emery N. - 

Id.: 71030610

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Palabras claveApplied Mathematics - 

Tipo de recurso: Journal Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: open

Requerimientos técnicos:  Browser: Any - 

Relación: [References] doi:10.1073/pnas.1702877115
[References] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776784/pdf/
[References] Proceedings of the National Academy of Sciences of the United States of America

Fecha de contribución: 28-feb-2018


* Kim, Seong-Eun, Michael K. Behr, Demba Ba, and Emery N. Brown. 2017. “State-space multitaper time-frequency analysis.” Proceedings of the National Academy of Sciences of the United States of America 115 (1): E5-E14. doi:10.1073/pnas.1702877115. http://dx.doi.org/10.1073/pnas.1702877115.

Otros recursos de la mismacolección

  1. The differential representation of number and gender in Spanish This paper investigates the geometry of phi-features with a special emphasis on number and gender in...
  2. Heritage languages and their speakers: State of the field, challenges, perspectives for future work, and methodologies This paper presents an overview of heritage-language studies, emphasizing the situation in the USA. ...
  3. Raising and control Linguistics
  4. Is it all processing all the way down? Linguistics
  5. Processing morphological ambiguity: An experimental investigation of Russian numerical phrases Russian nouns in nominative and accusative numerical expressions appear in three different forms, de...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.