1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

This paper considers the maximum likelihood estimation of factor models of high dimension, where the number of variables (N) is comparable with or even greater than the number of observations (T). An inferential theory is developed. We establish not only consistency but also the rate of convergence and the limiting distributions. Five different sets of identification conditions are considered. We show that the distributions of the MLE estimators depend on the identification restrictions. Unlike the principal components approach, the maximum likelihood estimator explicitly allows heteroskedasticities, which are jointly estimated with other parameters. Efficiency of MLE relative to the principal components method is also considered.

Pertenece a

Project Euclid (Hosted at Cornell University Library)  

Autor(es)

Bai, Jushan -  Li, Kunpeng - 

Id.: 55202789

Idioma: inglés  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveHigh -  dimensional factor models - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0090-5364

Fecha de contribución: 15-may-2012

Contacto:

Localización:
* doi:10.1214/11-AOS966

Otros recursos de la mismacolección

  1. Nonasymptotic analysis of semiparametric regression models with high-dimensional parametric coefficients We consider a two-step projection based Lasso procedure for estimating a partially linear regression...
  2. On the contraction properties of some high-dimensional quasi-posterior distributions We study the contraction properties of a quasi-posterior distribution $\check{\Pi}_{n,d}$ obtained b...
  3. Spectrum estimation from samples We consider the problem of approximating the set of eigenvalues of the covariance matrix of a multiv...
  4. Bayesian detection of image boundaries Detecting boundary of an image based on noisy observations is a fundamental problem of image process...
  5. Phase transitions for high dimensional clustering and related problems Consider a two-class clustering problem where we observe $X_{i}=\ell_{i}\mu+Z_{i}$, $Z_{i}\stackrel{...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.