Thursday, February 11, 2016



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía

Statistical analysis of factor models of high dimension

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia

  Descargar recurso   Descargar recurso

Detalles del recurso

Pertenece a: Project Euclid (Hosted at Cornell University Library)  

Descripción: This paper considers the maximum likelihood estimation of factor models of high dimension, where the number of variables (N) is comparable with or even greater than the number of observations (T). An inferential theory is developed. We establish not only consistency but also the rate of convergence and the limiting distributions. Five different sets of identification conditions are considered. We show that the distributions of the MLE estimators depend on the identification restrictions. Unlike the principal components approach, the maximum likelihood estimator explicitly allows heteroskedasticities, which are jointly estimated with other parameters. Efficiency of MLE relative to the principal components method is also considered.

Autor(es): Bai, Jushan -  Li, Kunpeng - 

Id.: 55202789

Idioma: English  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveHigh -  dimensional factor models - 

Tipo de recurso: Text  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright 2012 Institute of Mathematical Statistics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] 0090-5364

Fecha de contribución: 15-may-2012


* doi:10.1214/11-AOS966

Otros recursos del mismo autor(es)

  1. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and f...
  2. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila



    Salt stress is one of the major abiotic stresses affecting plan...

  3. Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone



    Phosphorus (P) is an essential macronutrient for all living org...

  4. MiR-373-3p Promotes Invasion and Metastasis of Lung Adenocarcinoma Cells Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide, and me...
  5. THEORY AND APPLICATIONS OF TAR MODEL WITH TWO THRESHOLD VARIABLES A growing body of threshold models has been developed over the past two decades to capture the nonli...

Otros recursos de la misma colección

  1. Estimation for single-index and partially linear single-index integrated models Estimation mainly for two classes of popular models, single-index and partially linear single-index ...
  2. A goodness-of-fit test for stochastic block models The stochastic block model is a popular tool for studying community structures in network data. We d...
  3. Optimization via low-rank approximation for community detection in networks Community detection is one of the fundamental problems of network analysis, for which a number of me...
  4. Graph connection Laplacian methods can be made robust to noise Recently, several data analytic techniques based on graph connection Laplacian (GCL) ideas have appe...
  5. Rate exact Bayesian adaptation with modified block priors A novel block prior is proposed for adaptive Bayesian estimation. The prior does not depend on the s...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.

Busque un recurso