1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Opción 3: Descargar recurso

Detalles del recurso

Descripción

This paper gives a test of overidentifying restrictions that is robust to many instruments and heteroskedasticity. It is based on a jackknife version of the overidentifying test statistic. Correct asymptotic critical values are derived for this statistic when the number of instruments grows large, at a rate up to the sample size. It is also shown that the test is valid when the number of instruments is fixed and there is homoskedasticity. This test improves on recently proposed tests by allowing for heteroskedasticity and by avoiding assumptions on the instrument projection matrix. This paper finds in Monte Carlo studies that the test is more accurate and less sensitive to the number of instruments than the Hausman–Sargan or GMM tests of overidentifying restrictions.

Pertenece a

DSpace at MIT  

Autor(es)

Chao, John C. -  Swanson, Norman R. -  Woutersen, Tiemen -  Hausman, Jerry A -  Newey, Whitney K - 

Id.: 69616874

Idioma: inglés (Estados Unidos)  - 

Versión: 1.0

Estado: Final

Tipo de recurso: Article  -  http://purl.org/eprint/type/JournalArticle  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Creative Commons Attribution-NonCommercial-NoDerivs License

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] Other univ. web domain
[References] http://dx.doi.org/10.1016/j.jeconom.2013.08.003
[References] Journal of Econometrics

Fecha de contribución: 08-feb-2017

Contacto:

Localización:
* 03044076
* 0304-4076
* Chao, John C. et al. “Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity.” Journal of Econometrics 178 (2014): 15–21.
* PUBLISHER_CC

Otros recursos del mismo autor(es)

  1. Double/Debiased/Neyman Machine Learning of Treatment Effects Chernozhukov et al. (2016) provide a generic double/de-biased machine learning (ML) approach for obt...
  2. 14.382 Econometrics I, Spring 2005 This course focuses on the specification and estimation of the linear regression model. The course d...
  3. Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models International audience
  4. Asymptotic Properties of the Hahn–Hausman Test for Weak-Instruments This paper provides weak-instrument asymptotic representations of tests for instrument validity by H...
  5. Average and Quantile Effects in Nonseparable Panel Models Nonseparable panel models are important in a variety of economic settings, including discrete choice...

Otros recursos de la mismacolección

  1. An Experimental and Modeling Study of Vacuum Residue Upgrading in Supercritical Water Arabian Heavy crude oil was fractionated into distillate and vacuum residue fractions. The vacuum re...
  2. Iterative Regularization via Dual Diagonal Descent In the context of linear inverse problems, we propose and study a general iterative regularization m...
  3. Preheating after multifield inflation with nonminimal couplings. III. Dynamical spacetime results This paper concludes our semianalytic study of preheating in inflationary models comprised of multip...
  4. Host genetic variation and its microbiome interactions within the Human Microbiome Project Background: Despite the increasing recognition that microbial communities within the human body are ...
  5. On the character of certain tilting modules Let G be a semisimple group over an algebraically closed field of characteristic p > 0. We give a (p...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.