1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Detalles del recurso


Segmentation of Multiple Sclerosis (MS) lesions is a crucial part of MS diagnosis and therapy. Segmentation of lesions is usually performed manually, exposing this process to human errors. Thus, exploiting automatic and semi-automatic methods is of interest. In this paper, a new method is proposed to segment MS lesions from multichannel MRI data (T1-W and T2-W). For this purpose, statistical features of spatial domain and wavelet coefficients of frequency domain are extracted for each pixel of skull-stripped images to form a feature vector. An unsupervised clustering algorithm is applied to group pixels and extracts lesions. Experimental results demonstrate that the proposed method is better than other state of art and contemporary methods of segmentation in terms of Dice metric, specificity, false-positive-rate, and Jaccard metric.

Pertenece a

Applied Medical Informatics  


AKBARPOUR, Tannaz -  Sahand University of Technology -  SHAMSI, Mousa -  DANESHVAR, Sabalan -  Electrical and computer engineering faculty, Tabriz University -  POOREISA, Masoud -  medicine faculty, Tabriz University of Medical science - 

Id.: 71373938

Idioma: eng  - 

Versión: 1.0

Estado: Final

Tipo:  application/pdf - 

Palabras claveMultiple sclerosis -  Segmentation -  Multichannel Magnetic Resonance Imaging (MRI) -  Wavelet -  Energy -  Entropy - 

Tipo de recurso: info:eu-repo/semantics/article  -  info:eu-repo/semantics/publishedVersion  -  Peer-reviewed Article  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

: Copyright (c) 2018 Applied Medical Informatics

Formatos:  application/pdf - 

Requerimientos técnicos:  Browser: Any - 

Relación: [IsBasedOn] Applied Medical Informatics; Vol 39, No 1-2 (2017); 30-40
[IsBasedOn] 2067-7855
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/view/619/pdf_56
[References] http://ami.info.umfcluj.ro/index.php/AMI/article/downloadSuppFile/619/251

Fecha de contribución: 05-jun-2018



Otros recursos del mismo autor(es)

  1. Segmentation of Apple Color Images Utilizing Fuzzy Clustering Algorithms In this paper, we investigate and study one of prominent image processing applications that are the ...

Otros recursos de la mismacolección

  1. An Experiment to Analyze Performance of Virtual Private Network Approach to Information Exchange between Health Facilities In developing countries, Tanzania in particular, studies and reports have depicted that there is a s...
  2. Power Spectral Analysis of Short-Term Heart Rate Variability in Healthy and Arrhythmia Subjects by the Adaptive Continuous Morlet Wavelet Transform Power spectral analysis of short-term heart rate variability (HRV) can provide instant valuable info...
  3. Detection and Diagnosis of Tumor Regions in Thyroid Images using CANFIS Classifier Thyroid tumor is an uncommon type of cancer. This cancer can be cured if it is detected promptly and...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.