1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  


McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012


* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Vector field processing on triangle meshes While scalar fields on surfaces have been staples of geometry processing, the use of tangent vector ...
  2. Semi-regular mesh extraction from volumes We present a novel method to extract iso-surfaces from distance volumes. It generates high quality s...
  3. Removing excess topology from isosurfaces Many high-resolution surfaces are created through isosurface extraction from volumetric representati...
  4. TextureMontage We propose a technique, called TextureMontage, to seamlessly map a patchwork of texture images onto ...
  5. Mesh quilting for geometric texture synthesis We introduce mesh quilting, a geometric texture synthesis algorithm in which a 3D texture sample giv...

Otros recursos de la mismacolección

  1. X-ray and radio observations of the magnetar SGR J1935+2154 during its 2014, 2015, and 2016 outbursts We analyzed broad-band X-ray and radio data of the magnetar SGR J1935+2154 taken in the aftermath of...
  2. Luminosity-dependent changes of the cyclotron line energy and spectral hardness in Cep X-4 X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In pa...
  3. Causal Discovery from Subsampled Time Series Data by Constraint Optimization This paper focuses on causal structure estimation from time series data in which measurements are ob...
  4. Feedback-Based Inhomogeneous Markov Chain Approach To Probabilistic Swarm Guidance This paper presents a novel and generic distributed swarm guidance algorithm using inhomogeneous Mar...
  5. Swarms of Femtosats for Synthetic Aperture Applications The Silicon Wafer Integrated Femtosatellites (SWIFT) Swarm Project presents a new paradigm-shifting ...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.