Saturday, November 22, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía


Vector Field Analysis and Visualization through Variational Clustering

1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario
    registrado en Universia


  Descargar recurso   Descargar recurso

Detalles del recurso

Pertenece a: Caltech Authors  

Descripción: Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Autor(es): McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106


Otros recursos de la misma colección

  1. Projections for Dark Photon Searches at Mu3e We show that dark photons (A0) with masses ~10-80MeV can be probed in the decay µ^+ → e^+v_ev_µA', A...
  2. Liquid pair correlations in four spatial dimensions: Theory versus simulation Using liquid integral equation theory, we calculate the pair correlations of particles that interact...
  3. ALMA Observations of Warm Dense Gas in NGC 1614 — Breaking of Star Formation Law in the Central kpc We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435 μm dust continuum ...
  4. A Machine Learning Method to Infer Fundamental Stellar Parameters from Photometric Light Curves A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observat...
  5. A structural distortion induced magneto-elastic locking in Sr_2IrO_4 revealed through nonlinear optical harmonic generation We report a global structural distortion in Sr_2IrO_4 using spatially resolved optical second and th...

Valoración de los usuarios

No hay ninguna valoración para este recurso.Sea el primero en valorar este recurso.
 

Busque un recurso