1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Time-Varying Surface Reconstruction of an Actor’s Performance We propose a fully automatic time-varying surface reconstruction of an actor’s performance captured ...
  2. Interactive Geometry Remeshing We present a novel technique, both flexible and efficient, for interactive remeshing of irregular ge...
  3. Variational tetrahedral meshing In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is prese...
  4. Discrete Connection and Covariant Derivative for Vector Field Analysis and Design In this article, we introduce a discrete definition of connection on simplicial manifolds, involving...
  5. Distinct 3D Glyphs with Data Layering for Highly Dense Multivariate Data Plots A carefully constructed scatterplot can reveal plenty about an underlying data set. However, in most...

Otros recursos de la misma colección

  1. Time reversal invariant gapped boundaries of the double semion The boundary of a fractionalized topological phase can be gapped by condensing a proper set of boson...
  2. Bosonic topological crystalline insulators and anomalous symmetry fractionalization via the flux-fusion anomaly test We introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fra...
  3. Ising anyons in frustration-free Majorana-dimer models Dimer models have long been a fruitful playground for understanding topological physics. Here we int...
  4. Entropic Uncertainty Relations and their Applications Heisenberg's uncertainty principle forms a fundamental element of quantum mechanics. Uncertainty rel...
  5. Quantum-proof randomness extractors via operator space theory Quantum-proof randomness extractors are an important building block for classical and quantum crypto...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.