1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Blue Noise through Optimal Transport International audience
  2. Symmetry and Orbit Detection via Lie-Algebra Voting International audience
  3. Symmetry and Orbit Detection via Lie-Algebra Voting In this paper, we formulate an automatic approach to the detection of partial, local, and global sym...
  4. Time-Varying Surface Reconstruction of an Actor’s Performance We propose a fully automatic time-varying surface reconstruction of an actor’s performance captured ...
  5. Interactive Geometry Remeshing We present a novel technique, both flexible and efficient, for interactive remeshing of irregular ge...

Otros recursos de la misma colección

  1. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been th...
  2. The IPAC Image Subtraction and Discovery Pipeline for the intermediate Palomar Transient Factory We describe the near real-time transient-source discovery engine for the intermediate Palomar Transi...
  3. Positivity of Curvature-Squared Corrections in Gravity We study the Gauss-Bonnet (GB) term as the leading higher-curvature correction to pure Einstein grav...
  4. Super-quantum curves from super-eigenvalue models In modern mathematical and theoretical physics various generalizations, in particular supersymmetric...
  5. The Verlinde formula for Higgs bundles We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.