1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Planar Shape Detection at Structural Scales International audience
  2. Variational discretization for rotating stratified fluids International audience
  3. Variational Shape Approximation Achieving efficiency in mesh processing often demands that overly verbose 3D datasets be reduced to ...
  4. Anisotropic Polygonal Remeshing SIGGRAPH 2003 Session : Surfaces. Article dans revue scientifique avec comité de lecture. internatio...

Otros recursos de la mismacolección

  1. Genomic DNA functionalized 3D printed materials for drug capture Since the discovery of nitrogen mustard as an effective anti-cancer agent in the 1940s, and conseque...
  2. Even-handed active space selection in projection-based wavefunction-in-DFT embedding Projection-based embedding offers a simple framework for embedding wavefunction theories in d. funct...
  3. Operando Raman interrogation of the synthesis and activation of a CoSe HER catalyst A highly active cobalt selenide electrocatalyst for the hydrogen-evolution reaction (HER) in acidic ...
  4. Forces on nascent polypeptides during membrane insertion and translocation via the Sec translocon Co-translational insertion into and translocation across the cell membrane via the Sec translocon ar...
  5. Photoelectrochemical performance of BiVO_4 photoanodes integrated with [NiFe]-layered double hydroxide water oxidation nanocatalysts We integrated laser-made highly active nickel iron layered double hydroxide ([NiFe]-LDH) water oxidn...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.