1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  


McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012


* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Unconstrained spherical parameterization [no abstract]
  2. Symmetry and Orbit Detection via Lie-Algebra Voting In this paper, we formulate an automatic approach to the detection of partial, local, and global sym...
  3. Discrete, Vorticity-Preserving, and Stable Simplicial Fluids Visual accuracy, low computational cost, and numerical stability are foremost goals in computer anim...
  4. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow In this paper, we develop methods to rapidly remove rough features from irregularly triangulated dat...
  5. Discrete Differential Forms for Computational Modeling The emergence of computers as an essential tool in scientific research has shaken the very foundatio...

Otros recursos de la misma colección

  1. First-principles dynamics of electrons and phonons First-principles calculations combining density functional theory and many-body perturbation theory ...
  2. Enhanced strength and temperature dependence of mechanical properties of Li at small length scales and its implications for Li metal anodes Most next-generation Li-ion battery chemistries require a functioning lithium metal (Li) anode. Howe...
  3. An improved analysis of GW150914 using a fully spin-precessing waveform model This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalesc...
  4. (2,2) Superconformal Bootstrap in Two Dimensions We find a simple relation between two-dimensional BPS N=2 superconformal blocks and bosonic Virasoro...
  5. Non-supersymmetric AdS and the Swampland We propose to sharpen the weak gravity conjecture by the statement that, except for BPS states in a ...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.