1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia

Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso


Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  


McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012


* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Variational Shape Approximation Achieving efficiency in mesh processing often demands that overly verbose 3D datasets be reduced to ...
  2. Anisotropic Polygonal Remeshing SIGGRAPH 2003 Session : Surfaces. Article dans revue scientifique avec comité de lecture. internatio...
  3. Variational Tetrahedral Meshing International audience
  4. Spectral Conformal Parameterization International audience
  5. Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets International audience

Otros recursos de la mismacolección

  1. Micro-resonator soliton generated directly with a diode laser An external-cavity diode laser is reported with ultralow noise, high power coupled to a fiber, and f...
  2. Searching for Exoplanets Using a Microresonator Astrocomb Detection of weak radial velocity shifts of host stars induced by orbiting planets is an important t...
  3. Double-Trace Deformations of Conformal Correlations Large N conformal field theories often admit unitary renormalization group flows triggered by double...
  4. Vector Effective Field Theories from Soft Limits We present a bottom-up construction of vector effective field theories using the infrared structure ...
  5. Beyond Falsifiability: Normal Science in a Multiverse Cosmological models that invoke a multiverse - a collection of unobservable regions of space where c...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.