1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Conceptual design for mechatronic assemblies We have developed a tool to support computer-aided conceptual design of mechatronic assemblies in a ...
  2. Expressive Maps Expressive Maps is an artistic visualization of a complete mouse DNA sequence, taken from embryonic ...
  3. Art from Ephemeral [no abstract]
  4. Scalable Interactive Volume Rendering Using Off-the-Shelf Components This paper describes an application of a second generation implementation of the Sepia architect...
  5. Subdivision exterior calculus for geometry processing This paper introduces a new computational method to solve differential equations on subdivision surf...

Otros recursos de la mismacolección

  1. Spin Topological Field Theory and Fermionic Matrix Product States We study state-sum constructions of G-equivariant spin-TQFTs and their relationship to Matrix Produc...
  2. Tessellations and Pattern Formation in Plant Growth and Development The shoot apical meristem (SAM) is a dome-shaped collection of cells at the apex of growing plants f...
  3. Broad Band X-ray Spectra of Atoll Source 4U 1636-536: NuSTAR and Swift Results In this work we investigate broad band (1-79 keV) spectral nature of the atoll source 4U 1636-536 us...
  4. Modeling galaxy clustering on small scales to tighten constraints on dark energy and modified gravity We present a new approach to measuring cosmic expansion history and growth rate of large scale struc...
  5. Instruments on large optical telescopes -- A case study In the distant past, telescopes were known, first and foremost, for the sizes of their apertures. Ho...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.