1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Harvard Vespers : addressed to Harvard Students / The two baptisms -- Christ and the blind man -- The soil and the seed -- God our rock -- Christ and ...
  2. Towards Design Principles for Visual Analytics in Operations Contexts Operations engineering teams interact with complex data systems to make technical decisions that ens...
  3. Planar Shape Detection at Structural Scales International audience
  4. Variational discretization for rotating stratified fluids International audience
  5. Variational Shape Approximation Achieving efficiency in mesh processing often demands that overly verbose 3D datasets be reduced to ...

Otros recursos de la mismacolección

  1. Defining the baseline of the REE stable isotope variations in solar system materials: Earth Mass-dependent fractionations (MDFs) of stable isotopes record critical information regarding the or...
  2. ^(36)Cl-^(36)S in Allende CAIs: Implication for the origins of ^(36)Cl in the early solar system Chlorine-36 (t_(1/2)=0.3 Myr) decays to either ^(36)Ar (98%, β-) or ^(36)S (1.9%, ε and β+). This ra...
  3. Uranium isotope variations in group II refractory inclusions The ^(235)U/^(238)U ratio shows little variability in most terrestrial and meteoritic bodies (≤1 ‰) ...
  4. Introducing Teflon-HPLC With increasingly ambitious sample return missions and instrumentation of ever-increasing sensitivit...
  5. ^(238)U/^(235)U in marine carbonates as a tracer of Precambrian paleoredox conditions The timing and magnitude of the oxygenation of Earth’s ocean is still a matter of intense debate. Pr...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.