1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Anisotropic Polygonal Remeshing In this paper, we propose a novel polygonal remeshing technique that exploits a key aspect of surfac...
  2. Angle-Analyzer: A Triangle-Quad Mesh Codec We present Angle-Analyzer, a new single-rate compression algorithm for triangle-quad hybrid meshes. ...
  3. Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes Encoders for triangle mesh connectivity based on enumeration of vertex valences are among the best r...
  4. Efficient Surface Remeshing by Error Diffusion We present a novel technique, both flexible and efficient, for interactive remeshing of irregular ge...
  5. Space-Time Adaptive Simulation of Highly Deformable Substances This report presents an approach for efficiently yet precisely simulating highly deformable substanc...

Otros recursos de la misma colección

  1. Ring-expansion metathesis polymerization of cycloolefins to highly pure cyclic polymers The means to produce cyclic polymers in high purity and at large scale remains an elusive goal. Alth...
  2. Aerosol-cloud-climate interactions from a modeling perspective Atm. aerosols interact directly and indirectly with the Earth"s radiation budget a effect, aerosols ...
  3. Proximal effects in bimetallic catalysts for olefin polymerization, in cross metathes and in multiblock polymers Proximity and sterics play a large role in polymn. and polymer chem. In the bimetallic polymn. catal...
  4. Self-assembly of brush block copolymers to nanostructured materials Brush block copolymers possess unique structural features and display extensiv work, we harness thes...
  5. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey K2's Campaign 9 (K2C9) will conduct a ∼3.7 deg^2 survey toward the Galactic bulge from 7/April throu...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.