1) La descarga del recurso depende de la página de origen
2) Para poder descargar el recurso, es necesario ser usuario registrado en Universia


Opción 1: Descargar recurso

Opción 2: Descargar recurso

Detalles del recurso

Descripción

Scientic computing is an increasingly crucial component of research in various disciplines. Despite its potential, exploration of the results is an often laborious task, owing to excessively large and verbose datasets output by typical simulation runs. Several approaches have been proposed to analyze, classify, and simplify such data to facilitate an informative visualization and deeper understanding of the underlying system. However, traditional methods leave much room for improvement. In this article we investigate the visualization of large vector elds, departing from accustomed processing algorithms by casting vector eld simplication as a variational partitioning problem. Adopting an iterative strategy, we introduce the notion of vector ieproxiesln to minimize the distortion error of our simplifiation by clustering the dataset into multiple best-fitting characteristic regions. This error driven approach can be performed with respect to various similarity metrics, offering a convenient set of tools to design clear and succinct representations of high dimensional datasets. We illustrate the benefits of such tools through visualization experiments of three-dimensional vector fields.

Pertenece a

Caltech Authors  

Autor(es)

McKenzie, Alexander -  Lombeyda, Santiago -  Desbrun, Mathieu - 

Id.: 54786426

Versión: 1.0

Estado: Final

Tipo:  application/pdf -  image/png - 

Tipo de recurso: Conference or Workshop Item  -  PeerReviewed  - 

Tipo de Interactividad: Expositivo

Nivel de Interactividad: muy bajo

Audiencia: Estudiante  -  Profesor  -  Autor  - 

Estructura: Atomic

Coste: no

Copyright: sí

Formatos:  application/pdf -  image/png - 

Requerimientos técnicos:  Browser: Any - 

Relación: [References] http://resolver.caltech.edu/CaltechCACR:2005.106
[References] http://authors.library.caltech.edu/28214/

Fecha de contribución: 27-dic-2012

Contacto:

Localización:
* McKenzie, Alexander and Lombeyda, Santiago and Desbrun, Mathieu (2005) Vector Field Analysis and Visualization through Variational Clustering. In: Eurographics - IEEE VGTC Symposium on Visualization 2005, 1-3 June, 2005, Leeds, UK. (Submitted) http://resolver.caltech.edu/CaltechCACR:2005.106

Otros recursos del mismo autor(es)

  1. Fast Tile-Based Adaptive Sampling with User-Specified Fourier Spectra International audience
  2. A multisymplectic integrator for elastodynamic frictionless impact problems We present a structure preserving numerical algorithm for the collision of elastic bodies. Our integ...
  3. Vector field processing on triangle meshes While scalar fields on surfaces have been staples of geometry processing, the use of tangent vector ...
  4. Semi-regular mesh extraction from volumes We present a novel method to extract iso-surfaces from distance volumes. It generates high quality s...
  5. Removing excess topology from isosurfaces Many high-resolution surfaces are created through isosurface extraction from volumetric representati...

Otros recursos de la mismacolección

  1. Snowflake Topological Insulator for Sound Waves We show how the snowflake phononic crystal structure, which has been realized experimentally recentl...
  2. Superconducting qubits on silicon substrates for quantum device integration We present the fabrication and characterization of transmon qubits formed from aluminum Josephson ju...
  3. The Hilbert Space of Quantum Gravity Is Locally Finite-Dimensional We argue in a model-independent way that the Hilbert space of quantum gravity is locally finite-dime...
  4. Prescriptive Unitarity We introduce a prescriptive approach to generalized unitarity, resulting in a strictly-diagonal basi...
  5. A brief history of Supergravity: the first three weeks I summarize, at its 41st--and what would have been Bruno's 94th-birthday, the history of the discove...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.