Recursos de colección

ETD at Indian Institute of Science (2.878 recursos)

Repository of Theses and Dissertations of Indian Institute of Science, Bangalore, India. The repository has been developed to capture, disseminate and preserve research theses of Indian Institute of Science.

Centre for Product Design and Manufacturing (cpdm)

Mostrando recursos 1 - 20 de 31

  1. The Effect of Mismatch of Total Knee Replacement Components with Knee Joint : A Finite Element Analysis

    Kanyal, Rahul
    It has been noticed that the need for total knee replacement surgery is increasing for Asian region. A total knee replacement is a permanent surgical solution for a patient having debilitating pain in knee joint suffering from arthritis. In this surgery, knee joint is replaced with components made up of bio-compatible materials after which the patient can resume the normal day to day activities. Western population has bigger build compared to Asian population. Most of the total knee replacement prosthesis are designed for western population. When these total knee prosthesis are used for Asian population, they cause a mismatch leading...

  2. The Effect of Mismatch of Total Knee Replacement Components with Knee Joint : A Finite Element Analysis

    Kanyal, Rahul
    It has been noticed that the need for total knee replacement surgery is increasing for Asian region. A total knee replacement is a permanent surgical solution for a patient having debilitating pain in knee joint suffering from arthritis. In this surgery, knee joint is replaced with components made up of bio-compatible materials after which the patient can resume the normal day to day activities. Western population has bigger build compared to Asian population. Most of the total knee replacement prosthesis are designed for western population. When these total knee prosthesis are used for Asian population, they cause a mismatch leading...

  3. A Geometric Approach for Discrete and Statistical Reach Analysis for a DHM with Mutable Supports

    Reddi, Sarath
    Conventional ergonomics analysis involves building physical mockups and conducting simulated operations, such that the constraints experienced by the human subjects can be directly observed. The limitations of this approach are that, they are resource intensive, less flexible for testing design variability and difficult to involve large number of subjects to account for population variability and thus, it is a reactive approach. With the advent of computer aided techniques, efforts are on to support ergonomics analysis processes for proactive design approaches. To achieve this, real scenarios are being simulated in virtual environments which include induction of representative human subjects into such...

  4. A Geometric Approach for Discrete and Statistical Reach Analysis for a DHM with Mutable Supports

    Reddi, Sarath
    Conventional ergonomics analysis involves building physical mockups and conducting simulated operations, such that the constraints experienced by the human subjects can be directly observed. The limitations of this approach are that, they are resource intensive, less flexible for testing design variability and difficult to involve large number of subjects to account for population variability and thus, it is a reactive approach. With the advent of computer aided techniques, efforts are on to support ergonomics analysis processes for proactive design approaches. To achieve this, real scenarios are being simulated in virtual environments which include induction of representative human subjects into such...

  5. Methodologies for Assessment of Impact Dynamic Responses

    Ranadive, Gauri Satishchandra
    Evaluation of the performance of a product and its components under impact loading is one of the key considerations in design. In order to assess resistance to damage or ability to absorb energy through plastic deformation of a structural component, impact testing is often carried out to obtain the 'Force - Displacement' response of the deformed component. In this context, it may be noted that load cells and accelerometers are commonly used as sensors for capturing impact responses. A drop-weight impact testing set-up consisting of a moving impactor head with a lightweight piezoresistive accelerometer and a strain gage based compression...

  6. Methodologies for Assessment of Impact Dynamic Responses

    Ranadive, Gauri Satishchandra
    Evaluation of the performance of a product and its components under impact loading is one of the key considerations in design. In order to assess resistance to damage or ability to absorb energy through plastic deformation of a structural component, impact testing is often carried out to obtain the 'Force - Displacement' response of the deformed component. In this context, it may be noted that load cells and accelerometers are commonly used as sensors for capturing impact responses. A drop-weight impact testing set-up consisting of a moving impactor head with a lightweight piezoresistive accelerometer and a strain gage based compression...

  7. Synthesis of Conceptual Designs for Sensors

    Sarkar, Biplab
    National Programme on Micro and Smart Materials and Systems (NPMASS)

  8. Synthesis of Conceptual Designs for Sensors

    Sarkar, Biplab
    National Programme on Micro and Smart Materials and Systems (NPMASS)

  9. Sustainability by Design : A Descriptive Model of Interaction and a Prescriptive Framework for Intervention

    Devadula, Suman
    Introduction: Sustainability is humanity’s collective ability to sustain development that meets the needs of the present without compromising the ability of the future generations to meet their own needs. Preceding closely to the World Commission on Environment and Development (WCED) Report of 1987, the General Assembly has adopted the UN Declaration, in 1986 [GA RES. 41/128] and has re-emphasized its importance in the UN Millennium Declaration, 2000. Given this anthropocentric rights basis of sustainability it becomes necessary to understand what this ability and development are with respect to the individual human. Problems of relevance, whose resolution benefits more people in...

  10. An Integrated Framework for Supporting Decision Making During Early Design Stages on End-of-Life Product Disassembly

    Selvakumar, Harivardhini
    Product life cycle (PLC) is the cycle which every product goes through from introduction to eventual demise. There are several issues with the current life cycle of a product when looked from the environmental impact perspective. These are: 1) depletion of natural resources due to the use of virgin materials for production, 2) Consumption of substantial amounts of energy during manufacturing, assembly and use, and 3) production of large amounts of waste during the lifecycle including those at the End of Life (EoL) phase. These issues impact resource scarcity, adverse effects on the environment and loss of embodied energy as...

  11. Study of Synergy between Plastic Deformation Mechanisms, Tribo-oxidation And Mechanically Mixed Layers in Tribology Of Ti-6Al-4V Slid Against SS316L And Alumina

    Ashok Raj, J
    Alloys of titanium are highly preferred materials for their excellent strength to weight ratio but the tribological issues while using them has been posing challenging issues for the tribological analyst, which are still areas of active research. Ti-6Al-4V (Ti64) is the most popular alloy of titanium and our understanding of the fundamental mechanisms of wear and friction of this alloy is still not complete. Previous investigations related to the tribology of these alloys have suggested a synergistic effect of plastic deformation and tribo-oxidation. The present investigation described in this thesis explores the existence of one more mode, namely the formation...

  12. Study of Synergy between Plastic Deformation Mechanisms, Tribo-oxidation And Mechanically Mixed Layers in Tribology Of Ti-6Al-4V Slid Against SS316L And Alumina

    Ashok Raj, J
    Alloys of titanium are highly preferred materials for their excellent strength to weight ratio but the tribological issues while using them has been posing challenging issues for the tribological analyst, which are still areas of active research. Ti-6Al-4V (Ti64) is the most popular alloy of titanium and our understanding of the fundamental mechanisms of wear and friction of this alloy is still not complete. Previous investigations related to the tribology of these alloys have suggested a synergistic effect of plastic deformation and tribo-oxidation. The present investigation described in this thesis explores the existence of one more mode, namely the formation...

  13. Towards Automated Design of Toggle Switch Mechanisms

    Kalyan Ramana, G
    This work deals with addressing the issues related to design of double toggle switch mechanisms with emphasis on structural, dimensional and dynamic aspects. Currently, almost all the issues related to electrical switches are dealt from electromagnetic point of view; the operating mechanism is hardly touched. It is observed that kinematic parameters influence electrical performance of switch significantly. Therefore, there is a need to develop methodologies for supporting exploration of diverse kinematic chains (KCs) for this purpose. Visual inspection is tedious and error prone even when a complete list of design criteria is available, hence, the work presented in the thesis...

  14. Towards Automated Design of Toggle Switch Mechanisms

    Kalyan Ramana, G
    This work deals with addressing the issues related to design of double toggle switch mechanisms with emphasis on structural, dimensional and dynamic aspects. Currently, almost all the issues related to electrical switches are dealt from electromagnetic point of view; the operating mechanism is hardly touched. It is observed that kinematic parameters influence electrical performance of switch significantly. Therefore, there is a need to develop methodologies for supporting exploration of diverse kinematic chains (KCs) for this purpose. Visual inspection is tedious and error prone even when a complete list of design criteria is available, hence, the work presented in the thesis...

  15. Prediction Of The Behaviors Of Hollow/Foam-Filled Axially Loaded Steel/Composite Hat Sections For Advanced Vehicle Crash Safety Design

    Haorongbam, Bisheshwar
    Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These thin-walled components can play a significant role in terms of crashworthiness and impact energy absorption, through a nonlinear phenomenon called as progressive dynamic buckling. As modern vehicle safety design relies heavily on computer-aided engineering, there is a great need for analysis-based predictions to yield close correlation with test results. Although hat sections subjected to axial loading have been studied widely in the past, there is scanty information in published literature on modeling procedures...

  16. Development Of An Advanced Methodology For Automotive IC Engine Design Optimization Using A Multi-Physics CAE Approach

    Sehemby, Amardeep A Singh
    The internal combustion engine is synonyms with the automobile since its invention in late 19th century. The internal combustion engine today is far more advanced and efficient compared to its early predecessors. An intense competition exists today amongst the automotive OEMs in various countries and regions for stepping up sales and increasing market share. The pressure on automotive OEMs to reduce fuel consumption and emission is enormous which has lead to innovations of many variations in engine and engine-related technologies. However, IC engines are in existence for well more than a century and hence have already evolved to a highly...

  17. Muscle Fatigue Analysis During Dyanamic Conraction

    Mishra, Ram Kinker
    In the field of ergonomics, biomechanics, sports and rehabilitation muscle fatigue is regarded as an important aspect since muscle fatigue is considered to be one of the main reasons for musculoskeletal disorders. Classical signal processing techniques used to understand muscle behavior are mainly based on spectral based parameters estimation, and mostly applied during static contraction and the signal must be stationary within the analysis window; otherwise, the resulting spectrum will make little physical sense. Furthermore, the shape and size of the analysis window also directly affect the spectral estimation. But fatigue analysis in dynamic conditions is of utmost requirement because...

  18. Studies On The Viability Of The Boundary Element Method For The Real-Time Simulation Of Biological Organs

    Kirana Kumara, P
    Realistic and real-time computational simulation of biological organs (e.g., human kidneys, human liver) is a necessity when one tries to build a quality surgical simulator that can simulate surgical procedures involving these organs. Currently deformable models, spring-mass models, or finite element models are widely used to achieve the realistic simulations and/or the real-time performance. It is widely agreed that continuum mechanics based numerical techniques are preferred over deformable models or spring-mass models, but those techniques are computationally expensive and hence the higher accuracy offered by those numerical techniques come at the expense of speed. Hence there is a need to...

  19. Prediction Of The Mechanical Behaviour Of A Closed Cell Aluminium Foam Using Advanced Nonlinear Finite Element Modelling

    Mahesh, C
    Cellular materials like aluminum foam which is the subject of interest here are generally characterized by high energy absorption capacity per unit weight. Materials of this category can be ideal for applications such as packaging and vehicle body structures for enhanced impact safety. A particularly well-known variety of closed-cell aluminum foam is designated as Alporas, which is studied here. From a viewpoint of mechanical behavior, the foam being considered can be represented using either a detailed cellular approach capturing the voids present in foam structure or a phenomenological approach in which experimental stress-strain response is assigned a-priori to solid elements...

  20. Understanding And Supporting Conceptual Design Synthesis Of Multiple State Mechanical Devices

    Todeti, Somasekhara Rao
    Conceptual design synthesis is part of the conceptual phase of the design process, which focuses on creating alternative, candidate solutions. Conceptual design phase has the greatest influence on the cost and characteristics of the final product; an excellent detailed design based on a poor and inappropriate concept can never compensate for the inadequacy of the concept. Conceptual design is difficult, which currently relies on the designer’s intuition and experience to guide the process. A major issue in conceptual design is that often not many alternative candidate solutions are explored by the designer during the design process. The major reasons for this are the tendency to delimit a design problem area...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.