Mostrando recursos 1 - 20 de 44

  1. Solução em representação analítica da equação de cinética com modelo de difusão de nêutrons em geometria Cilíndrica unidimensional

    Monteiro, Guilherme Ferreira
    Neste trabalho constrói-se uma representação analítica para a soluçãao da equação de cinética espacial de nêutrons em geometria cilíndrica. O domínio estudado e unidimensional e homogêneo. As equações foram resolvidas, primeiramente, para os casos com um grupo de energia e um grupo de precursores de nêutrons atrasados e, posteriormente, com dois grupos de energia e seis de precursores de nêutrons atrasados. A originalidade do trabalho consiste em inserir uma dependência temporal nas seções de choque de absorção e fissão na equação de cinética. A ideia principal para a representação das soluções reside na obtenção da solução das equações com seções...

  2. Extensões essenciais cíclicas de modulos simples sobre anéis de operadores diferenciais

    Vinciguerra, Robson Willians
    Um anel noetheriano S satisfaz a propriedade ( ) se todas as extens~oes essenciais c clicas de S-m odulos simples s~ao artinianas. An eis noetherianos com esta propriedade veri cam a Conjectura de Jacobson, que e um famoso problema em aberto em teoria de an eis. Neste trabalho investigamos esta propriedade em an eis de operadores diferenciais R[ ; ], onde R e um anel comutativo noetheriano e uma deriva c~ao de R. Mais especi camente, estudamos condi c~oes necess arias e su cientes para que R[ ; ] satisfa ca ( ), quando R e um anel -simples e,...

  3. Hypersurfaces of paralellisable Riemannian manifolds

    Longa, Eduardo Rosinato
    Introduzimos uma aplicação de Gauss para hipersuperfícies de variedades Riemannianas paralelizáveis e definimos uma curvatura associada. Após, provamos um teorema de Gauss-Bonnet. Como exemplo, estudamos cuidadosamente o caso no qual o espaço ambiente é uma esfera Euclidiana menos um ponto e obtemos um teorema de rigidez topológica. Ele é utilizado para dar uma prova alternativa para um teorema de Qiaoling Wang and Changyu Xia, o qual afirma que se uma hipersuperfície orientável imersa na esfera está contida em um hemisfério aberto e tem curvatura de Gauss-Kronecker nãonula então ela é difeomorfa a uma esfera. Depois, obtemos alguns invariantes topol_ogicos para...

  4. Hypersurfaces of paralellisable Riemannian manifolds

    Longa, Eduardo Rosinato
    Introduzimos uma aplicação de Gauss para hipersuperfícies de variedades Riemannianas paralelizáveis e definimos uma curvatura associada. Após, provamos um teorema de Gauss-Bonnet. Como exemplo, estudamos cuidadosamente o caso no qual o espaço ambiente é uma esfera Euclidiana menos um ponto e obtemos um teorema de rigidez topológica. Ele é utilizado para dar uma prova alternativa para um teorema de Qiaoling Wang and Changyu Xia, o qual afirma que se uma hipersuperfície orientável imersa na esfera está contida em um hemisfério aberto e tem curvatura de Gauss-Kronecker nãonula então ela é difeomorfa a uma esfera. Depois, obtemos alguns invariantes topol_ogicos para...

  5. Princípio do máximo forte para inequações diferenciais elípticas quasilineares singulares em forma divergente

    Santos, Filipe Jung dos
    Nesta dissertação, com base nos trabalhos [6], [5], provamos a suficiência da condição de divergência (2) para a validade do Princípio do Máximo Forte para (1), sob hipóteses ligeiramente mais gerais que em [2].

  6. Princípio do máximo forte para inequações diferenciais elípticas quasilineares singulares em forma divergente

    Santos, Filipe Jung dos
    Nesta dissertação, com base nos trabalhos [6], [5], provamos a suficiência da condição de divergência (2) para a validade do Princípio do Máximo Forte para (1), sob hipóteses ligeiramente mais gerais que em [2].

  7. Ferramentas probabilísticas aplicadas a problemas de coloração em grafos

    Sanches, Juliana
    Nesta tese apresentamos solu c~oes de dois problemas de colora c~ao de grafos. Para as solu c~oes de ambos problemas, utilizamos ferramentas probabil sticas. Em um desses problemas de colora c~ao, consideramos o espa co de probabilidade Gk n;p dos grafos aleat orios coloridos. Provamos que, para cada k 3, o limiar para a propriedade de que um grafo aleat orio colorido cont em uma arvore geradora propriamente colorida e log n=n, que e precisamente o limiar para a conexidade. Para resolver esse problema, utilizamos uma cota para a cardinalidade de um emparelhamento m aximo em Gn;(1+ ) log n=n,...

  8. Ferramentas probabilísticas aplicadas a problemas de coloração em grafos

    Sanches, Juliana
    Nesta tese apresentamos solu c~oes de dois problemas de colora c~ao de grafos. Para as solu c~oes de ambos problemas, utilizamos ferramentas probabil sticas. Em um desses problemas de colora c~ao, consideramos o espa co de probabilidade Gk n;p dos grafos aleat orios coloridos. Provamos que, para cada k 3, o limiar para a propriedade de que um grafo aleat orio colorido cont em uma arvore geradora propriamente colorida e log n=n, que e precisamente o limiar para a conexidade. Para resolver esse problema, utilizamos uma cota para a cardinalidade de um emparelhamento m aximo em Gn;(1+ ) log n=n,...

  9. O semigrupo inverso das extensões abelianas parciais

    Marín Colorado, Víctor Eduardo
    O objetivo principal desta tese e a construção do semigrupo inverso das classes de isomorfismo das extensões abelianas parciais de um anel comutativo.

  10. O semigrupo inverso das extensões abelianas parciais

    Marín Colorado, Víctor Eduardo
    O objetivo principal desta tese e a construção do semigrupo inverso das classes de isomorfismo das extensões abelianas parciais de um anel comutativo.

  11. (Co)Ações parciais da álgebra de Hopf de multiplicadores : Morita e Galois

    Martini, Grasiela
    Resumo não disponível

  12. (Co)Ações parciais da álgebra de Hopf de multiplicadores : Morita e Galois

    Martini, Grasiela
    Resumo não disponível

  13. Convergência da convolução de probabilidades invariantes pelo deslocamento

    Uggioni, Bruno Brogni
    Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N.

  14. Convergência da convolução de probabilidades invariantes pelo deslocamento

    Uggioni, Bruno Brogni
    Essa tese foi inspirada no artigo [10] de Lindenstrauss et al. e remete ao trabalho fundamental de Furstenberg [5]. Sejam (Z=pZ)N o produto cartesiano unlilateral de in nitas cópias de Z=pZ e a função shift em (Z=pZ)N.

  15. Representação de inteiros por algumas formas quadráticas ternárias

    De Bona, Thayner Gomes
    O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares.

  16. Representação de inteiros por algumas formas quadráticas ternárias

    De Bona, Thayner Gomes
    O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares.

  17. S-convolução e o operador de transferência generalizado

    Barchinski, Lucas Spillere
    Nesta tese apresentamos uma variação do conceito de convolução de medidas. Tratase da S-convolução, uma operação derivada da convolução usual, porém não-associativa e não-comutativa. Exploramos suas principais propriedades e suas relações com caracteres do grupo (Z=pZ)N. Utilizando tais relações, diagonalizamos algumas matrizes Bloco-Hankel. Na segunda parte da tese, de nimos o operador de transferência generalizado, inspirados na de nição de subshift generalizado desenvolvida, por exemplo, nos trabalhos de Gromov em [5] e de Friedland em [3]. Nesse contexto, provamos o Teorema de Ruelle-Perron-Frobenius.

  18. S-convolução e o operador de transferência generalizado

    Barchinski, Lucas Spillere
    Nesta tese apresentamos uma variação do conceito de convolução de medidas. Tratase da S-convolução, uma operação derivada da convolução usual, porém não-associativa e não-comutativa. Exploramos suas principais propriedades e suas relações com caracteres do grupo (Z=pZ)N. Utilizando tais relações, diagonalizamos algumas matrizes Bloco-Hankel. Na segunda parte da tese, de nimos o operador de transferência generalizado, inspirados na de nição de subshift generalizado desenvolvida, por exemplo, nos trabalhos de Gromov em [5] e de Friedland em [3]. Nesse contexto, provamos o Teorema de Ruelle-Perron-Frobenius.

  19. Uma introdução aos grandes desvios

    Müller, Gustavo Henrique
    Nesta dissertação de mestrado, vamos apresentar uma prova para os grandes desvios para variáveis aleatórias independentes e identicamente distribuídas com todos os momentos finitos e para a medida empírica de cadeias de Markov com espaço de estados finito e tempo discreto. Além disso, abordaremos os teoremas de Sanov e Gärtner-Ellis.

  20. Uma introdução aos grandes desvios

    Müller, Gustavo Henrique
    Nesta dissertação de mestrado, vamos apresentar uma prova para os grandes desvios para variáveis aleatórias independentes e identicamente distribuídas com todos os momentos finitos e para a medida empírica de cadeias de Markov com espaço de estados finito e tempo discreto. Além disso, abordaremos os teoremas de Sanov e Gärtner-Ellis.

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.