Recursos de colección
Project Euclid (Hosted at Cornell University Library) (192.674 recursos)
Advances in Applied Probability
Advances in Applied Probability
Schrempp, Michael
We study the asymptotic behaviour of the maximum interpoint distance of random points in a d-dimensional ellipsoid with a unique major axis. Instead of investigating only a fixed number of n points as n tends to ∞, we consider the much more general setting in which the random points are the supports of appropriately defined Poisson processes. Our main result covers the case of uniformly distributed points.
Vašata, Daniel
This paper deals with long-range dependence of random measures on ℝ^{d}. By examples, it is demonstrated that one must be careful in order to define it consistently. Therefore, we define long-range dependence by a rather specific second-order condition and provide an equivalent formulation involving the asymptotic behaviour of the Bartlett spectrum near the origin. Then it is shown that the defining condition may be formulated less strictly when the additional isotropy assumption holds. Finally, we present an example of a long-range dependent random measure based on the 0-level excursion set of a Gaussian random field for which the corresponding spectral...
Hueter, Irene
Branching processes in random environments have been widely studied and applied to population growth systems to model the spread of epidemics, infectious diseases, cancerous tumor growth, and social network traffic. However, Ebola virus, tuberculosis infections, and avian flu grow or change at rates that vary with time—at peak rates during pandemic time periods, while at low rates when near extinction. The branching processes in generalized autoregressive conditional environments we propose provide a novel approach to branching processes that allows for such time-varying random environments and instances of peak growth and near extinction-type rates. Offspring distributions we consider to illustrate the...
Bansaye, Vincent; Méléard, Sylvie; Mathieu, Richard
We describe in detail the speed of `coming down from infinity' for birth-and-death processes which eventually become extinct. Under general assumptions on the birth-and-death rates, we firstly determine the behavior of the successive hitting times of large integers. We identify two different regimes depending on whether the mean time for the process to go from n+1 to n is negligible or not compared to the mean time to reach n from ∞. In the first regime, the coming down from infinity is very fast and the convergence is weak. In the second regime, the coming down from infinity is gradual...
Luo, Shangzhen
In this paper we study a stochastic differential game between two insurers whose surplus processes are modelled by quadratic-linear diffusion processes. We consider an exit probability game. One insurer controls its risk process to minimize the probability that the surplus difference reaches a low level (indicating a disadvantaged surplus position of the insurer) before reaching a high level, while the other insurer aims to maximize the probability. We solve the game by finding the value function and the Nash equilibrium strategy in explicit forms.
Boxma, Onno; Essifi, Rim; Janssen, Augustus J. E. M.
We study an M/G/1-type queueing model with the following additional feature. The server works continuously, at fixed speed, even if there are no service requirements. In the latter case, it is building up inventory, which can be interpreted as negative workload. At random times, with an intensity ω(x) when the inventory is at level x>0, the present inventory is removed, instantaneously reducing the inventory to 0. We study the steady-state distribution of the (positive and negative) workload levels for the cases ω(x) is constant and ω(x) = ax. The key tool is the Wiener–Hopf factorization technique. When ω(x) is constant,...
Goldenschluger, Alexander
The subject of this paper is the problem of estimating the service time distribution of the M/G/∞ queue from incomplete data on the queue. The goal is to estimate G from observations of the queue-length process at the points of the regular grid on a fixed time interval. We propose an estimator and analyze its accuracy over a family of target service time distributions. An upper bound on the maximal risk is derived. The problem of estimating the arrival rate is considered as well.
Milstein, Grigori N.; Schoenmakers, John
In this paper we uniformly approximate the trajectories of the Cox–Ingersoll–Ross (CIR) process. At a sequence of random times the approximate trajectories will be even exact. In between, the approximation will be uniformly close to the exact trajectory. From a conceptual point of view, the proposed method gives a better quality of approximation in a path-wise sense than standard, or even exact, simulation of the CIR dynamics at some deterministic time grid.
Hirsch, Christian; Jahnel, Benedikt; Keeler, Paul; Patterson, Robert I. A.
We study large deviation principles for a model of wireless networks consisting of Poisson point processes of transmitters and receivers. To each transmitter we associate a family of connectable receivers whose signal-to-interference-and-noise ratio is larger than a certain connectivity threshold. First, we show a large deviation principle for the empirical measure of connectable receivers associated with transmitters in large boxes. Second, making use of the observation that the receivers connectable to the origin form a Cox point process, we derive a large deviation principle for the rescaled process of these receivers as the connection threshold tends to 0. Finally, we...
Kou, Steven; Zhong, Haowen
First-passage times (FPTs) of two-dimensional Brownian motion have many applications in quantitative finance. However, despite various attempts since the 1960s, there are few analytical solutions available. By solving a nonhomogeneous modified Helmholtz equation in an infinite wedge, we find analytical solutions for the Laplace transforms of FPTs; these Laplace transforms can be inverted numerically. The FPT problems lead to a class of bivariate exponential distributions which are absolute continuous but do not have memoryless property. We also prove that the density of the absolute difference of FPTs tends to ∞ if and only if the correlation between the two Brownian...
Rüschendorf, Rudger; Schnurr, Alexander; Wolf, Victor
Comparison results are given for time-inhomogeneous Markov processes with respect to function classes with induced stochastic orderings. The main result states the comparison of two processes, provided that the comparability of their infinitesimal generators as well as an invariance property of one process is assumed. The corresponding proof is based on a representation result for the solutions of inhomogeneous evolution problems in Banach spaces, which extends previously known results from the literature. Based on this representation, an ordering result for Markov processes induced by bounded and unbounded function classes is established. We give various applications to time-inhomogeneous diffusions, to processes...
Thoppe, Gugan C.; Yogeshwaran, D.; Adler, Robert J.
We consider a time varying analogue of the Erdős–Rényi graph and study the topological variations of its associated clique complex. The dynamics of the graph are stationary and are determined by the edges, which evolve independently as continuous-time Markov chains. Our main result is that when the edge inclusion probability is of the form p=n^{α}, where n is the number of vertices and α∈(-1/k, -1/(k + 1)), then the process of the normalised kth Betti number of these dynamic clique complexes converges weakly to the Ornstein–Uhlenbeck process as n→∞.
Adam, Etienne
We give a criterion for unlimited growth with positive probability for a large class of multidimensional stochastic models. As a by-product, we recover the necessary and sufficient conditions for recurrence and transience for critical multitype Galton–Watson with immigration processes and also significantly improve some results on multitype size-dependent Galton–Watson processes.
Galerne, Bruno
The main purpose of this paper is to define and characterize random fields of bounded variation, that is, random fields with sample paths in the space of functions of bounded variation, and to study their mean total variation. Simple formulas are obtained for the mean total directional variation of random fields, based on known formulas for the directional variation of deterministic functions. It is also shown that the mean variation of random fields with stationary increments is proportional to the Lebesgue measure, and an expression of the constant of proportionality, called the variation intensity, is established. This expression shows, in...
Dolinsky, Yan; Kifer, Yuri
We study partial hedging for game options in markets with transaction costs bounded from below. More precisely, we assume that the investor's transaction costs for each trade are the maximum between proportional transaction costs and a fixed transaction cost. We prove that in the continuous-time Black‒Scholes (BS) model, there exists a trading strategy which minimizes the shortfall risk. Furthermore, we use binomial models in order to provide numerical schemes for the calculation of the shortfall risk and the corresponding optimal portfolio in the BS model.
Nyrhinen, Harri
We study solvency of insurers in a comprehensive model where various economic factors affect the capital developments of the companies. The main interest is in the impact of real growth to ruin probabilities. The volume of the business is allowed to increase or decrease. In the latter case, the study is focused on run-off companies. Our main results give sharp asymptotic estimates for infinite-time ruin probabilities.
Kolossváry, István; Komjáthy, Júlia; Vágó, Lajos
In this paper we study random Apollonian networks (RANs) and evolving Apollonian networks (EANs), in d dimensions for any d≥2, i.e. dynamically evolving random d-dimensional simplices, looked at as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power-law tail with exponent τ=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the nth step of the dynamics tends to 0 but is not summable in n. This result gives a rigorous proof for the conjecture of Zhang...
Díaz, J.; Mitsche, D.; Perarnau, G.; Pérez-Giménez, X.
Given any two vertices u, v of a random geometric graph G(n, r), denote by d_{E}(u, v) their Euclidean distance and by d_{E}(u, v) their graph distance. The problem of finding upper bounds on d_{G}(u, v) conditional on d_{E}(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on d_{E}(u, v)...
Martyr, R.
In this paper we study a discrete-time optimal switching problem on a finite horizon. The underlying model has a running reward, terminal reward, and signed (positive and negative) switching costs. Using optimal stopping theory for discrete-parameter stochastic processes, we extend a well-known explicit dynamic programming method for computing the value function and the optimal strategy to the case of signed switching costs.
Pang, Guodong; Zhou, Yuhang
We study G/G/∞ queues with renewal alternating service interruptions, where the service station experiences `up' and `down' periods. The system operates normally in the up periods, and all servers stop functioning while customers continue entering the system during the down periods. The amount of service a customer has received when an interruption occurs will be conserved and the service will resume when the down period ends. We use a two-parameter process to describe the system dynamics: X^{r}(t,y) tracking the number of customers in the system at time t that have residual service times strictly greater than y. The service times...