Recursos de colección
Project Euclid (Hosted at Cornell University Library) (202.106 recursos)
Journal of Applied Mathematics
Journal of Applied Mathematics
Gaspar, José M.
This paper aims to connect the bridge between analytical results and the use of the computer for numerical simulations in economics. We address the analytical properties of a simple dynamic aggregate demand and aggregate supply (AD-AS) model and solve it numerically. The model undergoes a bifurcation as its steady state smoothly interchanges stability depending on the relationship between the impact of real interest rate on demand for liquidity and how fast agents revise their expectations on inflation. Using code embedded into a unique function in Matlab, we plot the numerical solutions of the model and simulate different dynamic adjustments using...
Bustamam, A.; Aldila, D.; Yuwanda, A.
A mathematical model of dengue diseases transmission will be discussed in this paper. Various interventions, such as vaccination of adults and newborns, the use of insecticides or fumigation, and also the enforcement of mechanical controls, will be considered when analyzing the best intervention for controlling the spread of dengue. From model analysis, we find three types of equilibrium points which will be built upon the dengue model. In this paper, these points are the mosquito-free equilibrium, disease-free equilibrium (with and without vaccinated compartment), and endemic equilibrium. Basic reproduction number as an endemic indicator has been found analytically. Based on analytical...
Gomes, Francisco Regis Abreu; Mateus, Geraldo Robson
Gomes, Francisco Regis Abreu; Mateus, Geraldo Robson
Gomes, Francisco Regis Abreu; Mateus, Geraldo Robson
Wikan, Arild
A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability to instability goes through a...
Wikan, Arild
A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability to instability goes through a...
Wikan, Arild
A discrete age-structured semelparous Leslie matrix model where density dependence is included both in the fecundity and in the survival probabilities is analysed. Depending on strength of density dependence, we show in the precocious semelparous case that the nonstationary dynamics may indeed be rich, ranging from SYC (a dynamical state where the whole population is in one age class only) dynamics to cycles of low period where all age classes are populated. Quasiperiodic and chaotic dynamics have also been identified. Moreover, outside parameter regions where SYC dynamics dominates, we prove that the transfer from stability to instability goes through a...
Hennig, Dirk
The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-dimensional lattices is proved. The DNLS features a general nonlinear term and variable range of interactions going beyond the usual nearest-neighbour interaction. The problem of the existence of travelling wave solutions is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.
Hennig, Dirk
The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-dimensional lattices is proved. The DNLS features a general nonlinear term and variable range of interactions going beyond the usual nearest-neighbour interaction. The problem of the existence of travelling wave solutions is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.
Hennig, Dirk
The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-dimensional lattices is proved. The DNLS features a general nonlinear term and variable range of interactions going beyond the usual nearest-neighbour interaction. The problem of the existence of travelling wave solutions is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.
Hennig, Dirk
The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-dimensional lattices is proved. The DNLS features a general nonlinear term and variable range of interactions going beyond the usual nearest-neighbour interaction. The problem of the existence of travelling wave solutions is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.
Hennig, Dirk
The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-dimensional lattices is proved. The DNLS features a general nonlinear term and variable range of interactions going beyond the usual nearest-neighbour interaction. The problem of the existence of travelling wave solutions is converted into a fixed point problem for an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.
Singh, Narinder; Singh, S. B.
A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to...
Singh, Narinder; Singh, S. B.
A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to...
Singh, Narinder; Singh, S. B.
A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to...
Singh, Narinder; Singh, S. B.
A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to...
Singh, Narinder; Singh, S. B.
A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to...
González-Santander, J. L.
The Samara-Valencia model for heat transfer in grinding has been recently used for calculating nontabulated integrals. Based on these results, new infinite integrals can be calculated, involving the Macdonald function and the modified Struve function.
González-Santander, J. L.
The Samara-Valencia model for heat transfer in grinding has been recently used for calculating nontabulated integrals. Based on these results, new infinite integrals can be calculated, involving the Macdonald function and the modified Struve function.