Thursday, November 27, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía
 

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,720,336 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

American Journal of Physiology - Gastrointestinal and Liver Physiology

Mostrando recursos 121 - 140 de 797

121. Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration - Nakano, Takanari; Inoue, Ikuo; Alpers, David H.; Akiba, Yasutada; Katayama, Shigehiro; Shinozaki, Rina; Kaunitz, Jonathan D.; Ohshima, Susumu; Akita, Masumi; Takahashi, Seiichiro; Koyama, Iwao; Matsushita, Makoto; Komoda, Tsugikazu
Intestinal alkaline phosphatase (IAP) is a brush-border membrane ectoenzyme (BBM-IAP) that is released into the lumen (L-IAP) after a high-fat diet. We examined the effects of oil feeding and the addition of mixed-lipid micelles on the formation of L-IAP in oil-fed rat intestine, Caco-2 cell monolayers, and mouse intestinal loops. We localized IAP in the duodenum of rats fed corn oil using fluorescence microscopy with enzyme-labeled fluorescence-97 as substrate. Four hours after oil feeding, L-IAP increased ∼10-fold accompanied by the loss of BBM-IAP, consistent with BBM-IAP release. Rat IAP isozyme mRNAs progressively increased 4–6 h after oil feeding, followed by...

122. Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine - Lu, Rong; Liu, Xingyin; Wu, Shaoping; Xia, Yinglin; Zhang, Yong-guo; Petrof, Elaine O.; Claud, Erika C.; Sun, Jun
Salmonella infection is a common public health problem that can become chronic and increase the risk of cancer. Live, mutated Salmonella is used to target cancer cells. However, few studies have addressed chronic Salmonella infection in vivo. AvrA is a Salmonella type-three secretion effector that is multifunctional, inhibiting intestinal inflammation and enhancing proliferation. β-catenin is a key player in intestinal renewal, inflammation, and tumorigenesis. We hypothesize that in Salmonella-infected intestine, AvrA chronically activates the β-catenin pathway and increases cell proliferation, thus deregulating the intestinal responses to bacterial infection. We followed mice with Salmonella infection for 27 wk and investigated the...

123. Influence of defunctionalization and mechanical forces on intestinal epithelial wound healing - Kovalenko, Pavlo L.; Flanigan, Thomas L.; Chaturvedi, Lakshmi; Basson, Marc D.
The influence on mucosal healing of luminal nutrient flow and the forces it creates are poorly understood. We hypothesized that altered deformation and extracellular pressure mediate, in part, the effects of defunctionalization on mucosal healing. We created patent or partially obstructing defunctionalizing jejunal Roux-en-Y anastomoses in rats to investigate mucosal healing in the absence or presence of luminal nutrient flow and measured luminal pressures to document partial obstruction. We used serosal acetic acid to induce ulcers in the proximal, distal, and defunctionalized intestinal segments. After 3 days, we assessed ulcer area, proliferation, and phosphorylated ERK. In vitro, we measured proliferation...

124. A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1 - Borthakur, Alip; Priyamvada, Shubha; Kumar, Anoop; Natarajan, Arivarasu A.; Gill, Ravinder K.; Alrefai, Waddah A.; Dudeja, Pradeep K.
Monocarboxylate transporter isoform-1 (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFAs) in the colon. Butyrate, a major SCFA, serves as the primary energy source for the colonic mucosa, maintains epithelial integrity, and ameliorates intestinal inflammation. Previous studies have shown substrate (butyrate)-induced upregulation of MCT1 expression and function via transcriptional mechanisms. The present studies provide evidence that short-term MCT1 regulation by substrates could be mediated via a novel nutrient sensing mechanism. Short-term regulation of MCT1 by butyrate was examined in vitro in human intestinal C2BBe1 and rat intestinal IEC-6 cells and ex vivo in rat intestinal...

125. A quantitative analysis of electrolyte exchange in the salivary duct - Patterson, Kate; Catalán, Marcelo A.; Melvin, James E.; Yule, David I.; Crampin, Edmund J.; Sneyd, James
A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na+ and Cl−. In the second stage, the ducts exchange Na+ and Cl− for K+ and HCO3−, producing a hypotonic final saliva with no apparent loss in volume. We have developed a tool that aims to understand how the ducts achieve this electrolyte exchange while maintaining the same volume. This tool is part of a larger multiscale model of the salivary gland and can be used at the duct or gland level to investigate the effects of genetic and...

126. Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: role of MCP-1 - McClellan, Jamie L.; Davis, J. Mark; Steiner, Jennifer L.; Enos, Reilly T.; Jung, Seung H.; Carson, James A.; Pena, Maria M.; Carnevale, Kevin A.; Berger, Franklin G.; Murphy, E. Angela
Tumor-associated macrophages are associated with poor prognosis in certain cancers. Monocyte chemoattractant protein 1 (MCP-1) is thought to be the most important chemokine for recruitment of macrophages to the tumor microenvironment. However, its role on tumorigenesis in a genetic mouse model of colon cancer has not been explored. We examined the role of MCP-1 on tumor-associated macrophages, inflammation, and intestinal tumorigenesis. Male ApcMin/+, ApcMin/+/MCP-1−/− or wild-type mice were euthanized at 18 wk of age and intestines were analyzed for polyp burden, apoptosis, proliferation, β-catenin, macrophage number and phenotype, markers for cytotoxic T lymphocytes and regulatory T cells, and inflammatory mediators....

127. Preservation of hepatic blood flow by direct peritoneal resuscitation improves survival and prevents hepatic inflammation following hemorrhagic shock - Hurt, Ryan T.; Matheson, Paul J.; Smith, Jason W.; Zakaria, El Rasheid; Shaheen, Saad P.; McClain, Craig J.; Garrison, R. Neal
Conventional resuscitation (CR) from hemorrhagic shock (HS) results in gut and liver hypoperfusion, organ and cellular edema, and vital organ injury. Adjunct direct peritoneal resuscitation (DPR) with dialysate prevents gut vasoconstriction, hypoperfusion, and injury. We hypothesized that DPR might also improve hepatocellular edema, inflammation, and injury. Anesthetized male SD rats were assigned to groups (n = 8/group): 1) sham (no HS); 2) HS (40% MAP/60 min) + intravenous fluid conventional resuscitation [CR; shed blood + 2 vol saline (SAL)/30 min]; 3) HS+CR+DPR (30 ml ip 2.5% glucose dialysate); or 4) HS+CR+SAL (30 ml ip saline). Histopathology showed lung and liver...

128. Colitis is associated with a loss of intestinofugal neurons - Linden, David R.
Intestinofugal neurons sense and receive information regarding mechanical distension of the bowel and transmit this information to postganglionic sympathetic neurons in the prevertebral ganglia. Previous studies have demonstrated that trinitrobenzene sulfonic acid (TNBS)-induced colitis is associated with a loss of myenteric neurons that occurs within the first 12 h following the inflammatory insult. The purpose of this study was to test the hypothesis that intestinofugal neurons are among the myenteric neurons lost during TNBS-induced colitis. The retrograde tracing dye Fast Blue was used to label intestinofugal neurons, and immunohistochemical staining for the RNA-binding proteins HuC/D was used to count all...

129. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors - Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I.; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O2. Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O2 would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling...

130. Advances in cholangiocyte immunobiology - Syal, Gaurav; Fausther, Michel; Dranoff, Jonathan A.
Cholangiocytes, or bile duct epithelia, were once thought to be the simple lining of the conduit system comprising the intra- and extrahepatic bile ducts. Growing experimental evidence demonstrated that cholangiocytes are in fact the first line of defense of the biliary system against foreign substances. Experimental advances in recent years have unveiled previously unknown roles of cholangiocytes in both innate and adaptive immune responses. Cholangiocytes can release inflammatory modulators in a regulated fashion. Moreover, they express specialized pattern-recognizing molecules that identify microbial components and activate intracellular signaling cascades leading to a variety of downstream responses. The cytokines secreted by cholangiocytes,...

131. Mechanism and regulation of vitamin B2 (riboflavin) uptake by mouse and human pancreatic β-cells/islets: physiological and molecular aspects - Ghosal, Abhisek; Said, Hamid M.
Riboflavin (RF) is essential for the normal metabolic activities of pancreatic β-cells and provides protection against oxidative stress. Very little is known about the mechanism of RF uptake by these cells and how the process is regulated. We addressed these issues using mouse-derived pancreatic β-TC-6 cells and freshly isolated primary mouse and human pancreatic islets. Our results showed 3H-RF uptake by β-TC-6 cells is Na+ independent, cis inhibited by RF-related compounds, trans stimulated by unlabeled RF, and saturable as a function of concentration (apparent Km of 0.17 ± 0.02 μM). The latter findings suggest involvement of a carrier-mediated process. Similarly,...

132. Enhanced excitability of guinea pig inferior mesenteric ganglion neurons during and following recovery from chemical colitis - Linden, David R.
Postganglionic sympathetic neurons in the prevertebral ganglia (PVG) provide ongoing inhibitory tone to the gastrointestinal tract and receive innervation from mechanosensory intestinofugal afferent neurons primarily located in the colon and rectum. This study tests the hypothesis that colitis alters the excitability of PVG neurons. Intracellular recording techniques were used to evaluate changes in the electrical properties of inferior mesenteric ganglion (IMG) neurons in the trinitrobenzene sulfonic acid (TNBS) and acetic acid models of guinea pig colitis. Visceromotor IMG neurons were hyperexcitable 12 and 24 h, but not 6 h, post-TNBS during “acute” inflammation. Hyperexcitability persisted at 6 days post-TNBS during...

133. Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats - Heldsinger, Andrea; Lu, Yuanxu; Zhou, Shi-Yi; Wu, Xiaoyin; Grabauskas, Gintautas; Song, Il; Owyang, Chung
Vagal CCK-A receptors (CCKARs) and leptin receptors (LRbs) interact synergistically to mediate short-term satiety. Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed by vagal afferent neurons. We sought to demonstrate that this neurotransmitter regulates CCK and leptin actions on short-term satiety. We also examined the signal transduction pathways responsible for mediating the CART release from the nodose ganglia (NG). ELISA studies coupled with gene silencing of NG neurons by RNA interference elucidated intracellular signaling pathways responsible for CCK/leptin-stimulated CART release. Feeding studies followed by gene silencing of CART in NG established the role of CART in mediating short-term satiety. Immunohistochemistry...

134. Insights from a novel model of slow-transit constipation generated by partial outlet obstruction in the murine large intestine - Heredia, Dante J.; Grainger, Nathan; McCann, Conor J.; Smith, Terence K.
The mechanisms underlying slow-transit constipation (STC) are unclear. In 50% of patients with STC, some form of outlet obstruction has been reported; also an elongated colon has been linked to patients with STC. Our aims were 1) to develop a murine model of STC induced by partial outlet obstruction and 2) to determine whether this leads to colonic elongation and, consequently, activation of the inhibitory “occult reflex,” which may contribute to STC in humans. Using a purse-string suture, we physically reduced the maximal anal sphincter opening in C57BL/6 mice. After 4 days, the mice were euthanized (acutely obstructed), the suture...

135. Autophagy and pancreatitis - Gukovskaya, Anna S.; Gukovsky, Ilya
Acute pancreatitis is an inflammatory disease of the exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. Recent findings from experimental models and genetically altered mice summarized in this review reveal that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis and that one cause of autophagy impairment is defective function of lysosomes. We propose that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways. There is strong evidence supporting this hypothesis. Investigation of autophagy in pancreatitis has just started, and many questions about the “upstream”...

136. Activated hepatic stellate cells upregulate transcription of ecto-5′-nucleotidase/CD73 via specific SP1 and SMAD promoter elements - Fausther, Michel; Sheung, Nina; Saiman, Yedidya; Bansal, Meena B.; Dranoff, Jonathan A.
Adenosine is a potent modulator of liver fibrosis and inflammation. Adenosine has been shown to regulate such diverse activities as chemotaxis, contraction, and matrix production in hepatic stellate cells (HSC). Ecto-5′-nucleotidase/CD73 [EC 3.1.3.5] is the rate-limiting enzyme in adenosine production. Cd73-deficient mice are resistant to experimental liver fibrosis and have impaired adenosine generation. However, cell-specific expression and regulation of CD73 within the fibrotic liver have not been defined. In particular, prior evidence demonstrating that liver myofibroblasts, the cells believed to be responsible for matrix formation in the liver, express CD73 is lacking. Thus we tested the hypothesis that HSC and...

137. PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion - Morris, E. Matthew; Meers, Grace M. E.; Booth, Frank W.; Fritsche, Kevin L.; Hardin, Christopher D.; Thyfault, John P.; Ibdah, Jamal A.
Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid metabolism, including complete (CO2) and incomplete (acid-soluble metabolites) fatty acid oxidation (FAO), tricarboxylic acid cycle flux, and triacylglycerol (TAG) storage and export. PGC-1α overexpression in primary hepatocytes produced an increase in markers of mitochondrial content and function (citrate synthase, mitochondrial DNA, and electron transport system complex proteins) and an increase in FAO,...

138. Pancreatic and biliary secretion are both altered in cystic fibrosis pigs - Uc, Aliye; Giriyappa, Radhamma; Meyerholz, David K.; Griffin, Michelle; Ostedgaard, Lynda S.; Tang, Xiao Xiao; Abu-El-Haija, Marwa; Stoltz, David A.; Ludwig, Paula; Pezzulo, Alejandro; Abu-El-Haija, Maisam; Taft, Peter; Welsh, Michael J.
The pancreas, liver, and gallbladder are commonly involved in cystic fibrosis (CF), and acidic, dehydrated, and protein-rich secretions are characteristic findings. Pancreatic function studies in humans have been done by sampling the jejunal fluid. However, it has been difficult to separately study the function of pancreatic and biliary systems in humans with CF, because jejunal fluid contains a mixture of bile and pancreatic fluids. In contrast, pancreatic and biliary ducts open separately into the porcine intestine; therefore, biliary and pancreatic fluid can be individually analyzed in CF pigs. We studied newborn wild-type (WT) and CF pigs and found that CFTR...

139. Active cathepsins B, L, and S in murine and human pancreatitis - Lyo, Victoria; Cattaruzza, Fiore; Kim, Tyson N.; Walker, Austin W.; Paulick, Margot; Cox, Daniel; Cloyd, Jordan; Buxbaum, James; Ostroff, James; Bogyo, Matthew; Grady, Eileen F.; Bunnett, Nigel W.; Kirkwood, Kimberly S.
Cathepsins regulate premature trypsinogen activation within acinar cells, a key initial step in pancreatitis. The identity, origin, and causative roles of activated cathepsins in pancreatic inflammation and pain are not defined. By using a near infrared-labeled activity-based probe (GB123) that covalently modifies active cathepsins, we localized and identified activated cathepsins in mice with cerulein-induced pancreatitis and in pancreatic juice from patients with chronic pancreatitis. We used inhibitors of activated cathepsins to define their causative role in pancreatic inflammation and pain. After GB123 administration to mice with pancreatitis, reflectance and confocal imaging showed significant accumulation of the probe in inflamed pancreas...

140. Cell-specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine - Jakab, Robert L.; Collaco, Anne M.; Ameen, Nadia A.
Changes in intestinal luminal pH affect mucosal ion transport. The aim of this study was to compare how luminal pH and specific second messengers modulate the membrane traffic of four major ion transporters (CFTR, NHE3, NKCC1, and NBCe1) in rat small intestine. Ligated duodenal, jejunal, and ileal segments were infused with acidic or alkaline saline, 8-Br-cAMP, or the calcium agonist carbachol in vivo for 20 min. Compared with untreated intestine, lumen pH was reduced after cAMP or carbachol and increased following HCO3−-saline. Following HCl-saline, lumen pH was restored to control pH levels. All four secretory stimuli resulted in brush-border membrane...

Página de resultados:
 

Busque un recurso