Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,997,050 recursos)

Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

American Journal of Physiology - Gastrointestinal and Liver Physiology

Mostrando recursos 121 - 140 de 994

  1. Ron receptor signaling is protective against DSS-induced colitis in mice

    Kulkarni, Rishikesh M.; Stuart, William D.; Gurusamy, Devikala; Waltz, Susan E.
    Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the intestine that result in painful and debilitating complications. Currently no cure exists for IBD, and treatments are primarily aimed at reducing inflammation to alleviate symptoms. Genome-wide linkage studies have identified the Ron receptor tyrosine kinase (TK) and its ligand, hepatocyte growth factor-like protein (HGFL), as genes highly associated with IBD. However, only scant information exists on the role of Ron or HGFL in IBD. Based on the linkage of Ron to IBD, we directly examined the biological role of Ron in colitis. Wild-type mice and mice lacking the TK signaling...

  2. Colonic inflammation and secondary bile acids in alcoholic cirrhosis

    Kakiyama, Genta; Hylemon, Phillip B.; Zhou, Huiping; Pandak, William M.; Heuman, Douglas M.; Kang, Dae Joong; Takei, Hajime; Nittono, Hiroshi; Ridlon, Jason M.; Fuchs, Michael; Gurley, Emily C.; Wang, Yun; Liu, Runping; Sanyal, Arun J.; Gillevet, Patrick M.; Bajaj, Jasmohan S.
    Alcohol abuse with/without cirrhosis is associated with an impaired gut barrier and inflammation. Gut microbiota can transform primary bile acids (BA) to secondary BAs, which can adversely impact the gut barrier. The purpose of this study was to define the effect of active alcohol intake on fecal BA levels and ileal and colonic inflammation in cirrhosis. Five age-matched groups {two noncirrhotic (control and drinkers) and three cirrhotic [nondrinkers/nonalcoholics (NAlc), abstinent alcoholic for >3 mo (AbsAlc), currently drinking (CurrAlc)]} were included. Fecal and serum BA analysis, serum endotoxin, and stool microbiota using pyrosequencing were performed. A subgroup of controls, NAlc, and...

  3. Disruption of epithelial barrier by quorum-sensing N-3-(oxododecanoyl)-homoserine lactone is mediated by matrix metalloproteinases

    Eum, Sung Yong; Jaraki, Dima; Bertrand, Luc; András, Ibolya E.; Toborek, Michal
    The intestinal epithelium forms a selective barrier maintained by tight junctions (TJs) and separating the luminal environment from the submucosal tissues. N-acylhomoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence homeostasis of the host intestinal epithelium. In the present study, we evaluated the regulatory mechanisms affecting the impact of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on barrier function of human intestinal epithelial Caco-2 cells. Treatment with C12-HSL, but not with C4-HSL, perturbed Caco-2 barrier function; the effect was associated with decreased levels of the TJ proteins occludin...

  4. Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2

    Ramírez-Alcántara, Verónica; Montrose, Marshall H.
    Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate),...

  5. Pharmacological ceramide reduction alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice

    Correnti, Jason M.; Juskeviciute, Egle; Swarup, Aditi; Hoek, Jan B.
    Hepatosteatosis, the ectopic accumulation of lipid in the liver, is one of the earliest clinical signs of alcoholic liver disease (ALD). Alcohol-dependent deregulation of liver ceramide levels as well as inhibition of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPAR-α) activity are thought to contribute to hepatosteatosis development. Adiponectin can regulate lipid handling in the liver and has been shown to reduce ceramide levels and activate AMPK and PPAR-α. However, the mechanisms by which adiponectin prevents alcoholic hepatosteatosis remain incompletely characterized. To address this question, we assessed ALD progression in wild-type (WT) and adiponectin knockout (KO) mice fed...

  6. Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9

    Good, Misty; Sodhi, Chhinder P.; Ozolek, John A.; Buck, Rachael H.; Goehring, Karen C.; Thomas, Debra L.; Vikram, Amit; Bibby, Kyle; Morowitz, Michael J.; Firek, Brian; Lu, Peng; Hackam, David J.
    Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in premature infants and develops partly from an exaggerated intestinal epithelial immune response to indigenous microbes. There has been interest in administering probiotic bacteria to reduce NEC severity, yet concerns exist regarding infection risk. Mechanisms of probiotic activity in NEC are unknown although activation of the microbial DNA receptor Toll-like receptor-9 (TLR9) has been postulated. We now hypothesize that the Gram-positive bacterium Lactobacillus rhamnosus HN001 can attenuate NEC in small and large animal models, that its microbial DNA is sufficient for its protective effects, and that protection requires...

  7. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.; Zimmermann, Nives
    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of...

  8. Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism

    Samak, Geetha; Gangwar, Ruchika; Crosby, Lynn M.; Desai, Leena P.; Wilhelm, Kristina; Waters, Christopher M.; Rao, RadhaKrishna
    The intestinal epithelium is subjected to various types of mechanical stress. In this study, we investigated the impact of cyclic stretch on tight junction and adherens junction integrity in Caco-2 cell monolayers. Stretch for 2 h resulted in a dramatic modulation of tight junction protein distribution from a linear organization into wavy structure. Continuation of cyclic stretch for 6 h led to redistribution of tight junction proteins from the intercellular junctions into the intracellular compartment. Disruption of tight junctions was associated with redistribution of adherens junction proteins, E-cadherin and β-catenin, and dissociation of the actin cytoskeleton at the actomyosin belt....

  9. Triptolide activates unfolded protein response leading to chronic ER stress in pancreatic cancer cells

    Mujumdar, Nameeta; Banerjee, Sulagna; Chen, Zhiyu; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Yamamoto, Masato; Vickers, Selwyn M.; Saluja, Ashok K.
    Pancreatic cancer is a devastating disease with a survival rate of <5%. Moreover, pancreatic cancer aggressiveness is closely related to high levels of prosurvival mediators, which can ultimately lead to rapid disease progression. One of the mechanisms that enables tumor cells to evade cellular stress and promote unhindered proliferation is the endoplasmic reticulum (ER) stress response. Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response (UPR). The UPR initially compensates for damage, but it eventually triggers cell death if ER dysfunction is severe or prolonged. Triptolide, a diterpene triepoxide,...

  10. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregulation

    Singh, Jagmohan; Kumar, Sumit; Krishna, Chadalavada Vijay; Rattan, Satish
    Internal anal sphincter (IAS) tone plays an important role in rectoanal incontinence (RI). IAS tone may be compromised during aging, leading to RI in certain patients. We examined the influence of oxidative stress in the aging-associated decrease in IAS tone (AADI). Using adult (4–6 mo old) and aging (24–30 mo old) rats, we determined the effect of oxidative stress on IAS tone and the regulatory RhoA/ROCK signal transduction cascade. We determined the effect of the oxidative stress inducer LY83583, which produces superoxide anions (O2·−), on basal and stimulated IAS tone before and after treatment of intact smooth muscle strips and...

  11. Animal models of gastrointestinal and liver diseases. Animal models of necrotizing enterocolitis: pathophysiology, translational relevance, and challenges

    Lu, Peng; Sodhi, Chhinder P.; Jia, Hongpeng; Shaffiey, Shahab; Good, Misty; Branca, Maria F.; Hackam, David J.
    Necrotizing enterocolitis is the leading cause of morbidity and mortality from gastrointestinal disease in premature infants and is characterized by initial feeding intolerance and abdominal distention followed by the rapid progression to coagulation necrosis of the intestine and death in many cases. Although the risk factors for NEC development remain well accepted, namely premature birth and formula feeding, the underlying mechanisms remain incompletely understood. Current thinking indicates that NEC develops in response to an abnormal interaction between the mucosal immune system of the premature host and an abnormal indigenous microflora, leading to an exaggerated mucosal inflammatory response and impaired mesenteric...

  12. Substance P is essential for maintaining gut muscle contractility: a novel role for coneurotransmission revealed by botulinum toxin

    Li, Cuiping; Micci, Maria-Adelaide; Murthy, Karnam S.; Pasricha, Pankaj Jay
    Substance P (SP) is commonly coexpressed with ACh in enteric motor neurons, and, according to the classical paradigm, both these neurotransmitters excite smooth muscle via parallel pathways. We hypothesized that, in addition, SP was responsible for maintaining the muscular responsiveness to ACh. We tested this hypothesis by using botulinum toxin (BoNT/A), a known blocker of vesicular release of neurotransmitters including ACh and neuropeptides. BoNT/A was injected into rat pyloric sphincter in different doses; as control we used boiled BoNT/A. At the desired time point, pylorus was dissected out and pyloric contractility was measured ex vivo in an organ bath and...

  13. Animals Models of Gastrointestinal and Liver Diseases. Animal models of alcohol-induced liver disease: pathophysiology, translational relevance, and challenges

    Mathews, Stephanie; Xu, Mingjiang; Wang, Hua; Bertola, Adeline; Gao, Bin
    Over the last four decades, chronic ethanol feeding studies in rodents using either ad libitum feeding or intragastric infusion models have significantly enhanced our understanding of the pathogenesis of alcoholic liver disease (ALD). Recently, we developed a chronic plus binge alcohol feeding model in mice that is similar to the drinking patterns of many alcoholic hepatitis patients: a history of chronic drinking and recent excessive alcohol consumption. Chronic+binge ethanol feeding synergistically induced steatosis, liver injury, and neutrophil infiltration in mice, which may be useful for the study of early alcoholic liver injury and inflammation. Using this chronic+binge model, researchers have...

  14. Epithelial VEGF signaling is required in the mouse liver for proper sinusoid endothelial cell identity and hepatocyte zonation in vivo

    Walter, Teagan J.; Cast, Ashley E.; Huppert, Kari A.; Huppert, Stacey S.
    Vascular endothelial growth factor (VEGF) is crucial for vascular development in several organs. However, the specific contribution of epithelial-VEGF signaling in the liver has not been tested. We used a mouse model to specifically delete Vegf from the liver epithelial lineages during midgestational development and assessed the cell identities and architectures of epithelial and endothelial tissues. We find that without epithelial-derived VEGF, the zonal endothelial and hepatocyte cell identities are altered. We also find decreased portal vein and hepatic artery branching coincident with an increase in hepatic hypoxia postnatally. Together, these data indicate that VEGF secreted from the hepatic epithelium...

  15. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates

    Malo, Madhu S.; Moaven, Omeed; Muhammad, Nur; Biswas, Brishti; Alam, Sayeda N.; Economopoulos, Konstantinos P.; Gul, Sarah Shireen; Hamarneh, Sulaiman R.; Malo, Nondita S.; Teshager, Abeba; Mohamed, Mussa M. Rafat; Tao, Qingsong; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth L.; Warren, H. Shaw; Robson, Simon C.; Hodin, Richard A.
    The intestinal microbiota plays a pivotal role in maintaining human health and well-being. Previously, we have shown that mice deficient in the brush-border enzyme intestinal alkaline phosphatase (IAP) suffer from dysbiosis and that oral IAP supplementation normalizes the gut flora. Here we aimed to decipher the molecular mechanism by which IAP promotes bacterial growth. We used an isolated mouse intestinal loop model to directly examine the effect of exogenous IAP on the growth of specific intestinal bacterial species. We studied the effects of various IAP targets on the growth of stool aerobic and anaerobic bacteria as well as on a...

  16. Role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells

    Li, Dan; Cao, Weibiao
    Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. Acid and reactive oxygen species (ROS) have been reported to cause DNA damage in Barrett's cells. We have previously shown that NADPH oxidase NOX5-S is responsible for acid-induced H2O2 production in Barrett's cells and in EA cells. In this study we examined the role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in a Barrett's EA cell line FLO and a Barrett's cell line CP-A. We found that pulsed acid treatment significantly increased tail moment in FLO...

  17. Regulation of hepatic insulin receptor activity following injury

    Jiang, Shaoning; Gavrikova, Tatyana A.; Messina, Joseph L.
    Impaired insulin receptor (IR) activity has been found in various models of insulin resistance, including models of injury or critical illness and Type 2 diabetes. However, mechanisms that modulate IR function remain unclear. With an animal model of critical-illness diabetes, we found insulin-induced IR tyrosine phosphorylation in the liver was impaired as early as 15 min following trauma and hemorrhage. Possible mechanisms for this defect were examined, including IR protein levels and IR posttranslational modifications. The total amounts of hepatic IRα and IRβ subunits and the membrane localization of the IR were not altered by trauma and hemorrhage, and, likewise,...

  18. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice

    Kong, Bo; Huang, Jiansheng; Zhu, Yan; Li, Guodong; Williams, Jessica; Shen, Steven; Aleksunes, Lauren M.; Richardson, Jason R.; Apte, Udayan; Rudnick, David A.; Guo, Grace L.
    Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation...

  19. Disruption of retinoblastoma protein expression in the intestinal epithelium impairs lipid absorption

    Choi, Pamela M.; Guo, Jun; Erwin, Christopher R.; Wandu, Wambui S.; Leinicke, Jennifer A.; Xie, Yan; Davidson, Nicholas O.; Warner, Brad W.
    We previously demonstrated increased villus height following genetic deletion, or knockout, of retinoblastoma protein (Rb) in the intestinal epithelium (Rb-IKO). Here we determined the functional consequences of augmented mucosal growth on intestinal fat absorption and following a 50% small bowel resection (SBR). Mice with constitutively disrupted Rb expression in the intestinal epithelium (Rb-IKO) along with their floxed (wild-type, WT) littermates were placed on a high-fat diet (HFD, 42% kcal fat) for 54 wk. Mice were weighed weekly, and fat absorption, indirect calorimetry, and MRI body composition were measured. Rb-IKO mice were also subjected to a 50% SBR, followed by HFD...

  20. Conditioned medium from Bifidobacteria infantis protects against Cronobacter sakazakii-induced intestinal inflammation in newborn mice

    Weng, Meiqian; Ganguli, Kriston; Zhu, Weishu; Shi, Hai Ning; Walker, W. Allan
    Necrotizing enterocolitis (NEC) is associated with a high morbidity and mortality in very low birth weight infants. Several hypotheses regarding the pathogenesis of NEC have been proposed but to date no effective treatment is available. Previous studies suggest that probiotic supplementation is protective. We recently reported that probiotic (Bifidobacterium infantis) conditioned medium (PCM) has an anti-inflammatory effect in cultured fetal human intestinal cells (H4) and fetal intestine explants. In this study, we tested in vivo whether PCM protects neonatal mice from developing intestinal inflammation induced by exposure to Cronobacter sakazakii (C. sakazakii), an opportunistic pathogen associated with NEC. We found...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.