Wednesday, August 20, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía
 

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,681,291 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Mostrando recursos 1 - 20 de 970

1. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes - Dayal, Jasbani H. S.; Cole, Clare L.; Pourreyron, Celine; Watt, Stephen A.; Lim, Yok Zuan; Salas-Alanis, Julio C.; Murrell, Dedee F.; McGrath, John A.; Stieger, Bruno; Jahoda, Colin; Leigh, Irene M.; South, Andrew P.
Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported...

2. Plectin-containing, centrally localized focal adhesions exert traction forces in primary lung epithelial cells - Eisenberg, Jessica L.; Beaumont, Kristin G.; Takawira, Desire; Hopkinson, Susan B.; Mrksich, Milan; Budinger, G. R. Scott; Jones, Jonathan C. R.
Receptor clustering upon cell attachment to the substrate induces assembly of cytoplasmic protein complexes termed focal adhesions (FAs), which connect, albeit indirectly, the extracellular matrix to the cytoskeleton. A subset of cultured primary alveolar epithelial cells (AEC) display a unique pattern of vinculin/paxillin/talin-rich FAs in two concentric circles when cultured on glass and micropatterned substrates: one ring of FAs located at the cell periphery (pFAs), and another FA ring located centrally in the cell (cFAs). Unusually, cFAs associate with an aster-like actin array as well as keratin bundles. Moreover, cFAs show rapid paxillin turnover rates following fluorescence recovery after photobleaching...

3. TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells - Chen, Guang; Chen, Xing; Sukumar, Aravin; Gao, Bo; Curley, Jessica; Schnaper, H. William; Ingram, Alistair J.; Krepinsky, Joan C.
Increased intraglomerular pressure is an important pathogenic determinant of kidney fibrosis in the progression of chronic kidney disease, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical stretch. MC produce extracellular matrix and profibrotic cytokines, including connective tissue growth factor (CTGF) when stretched. We show that p21-activated kinase 1 (Pak1) is activated by stretch in MC in culture and in vivo in a process marked by elevated intraglomerular pressures. Its activation is essential for CTGF upregulation. Rac1 is an upstream regulator of Pak1 activation. Stretch induces transactivation of the type I transforming growth factor β1 receptor (TβRI)...

4. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation - Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H.; Yang, Li-Jun
Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells...

5. αvβ3-integrin-mediated adhesion is regulated through an AAK1L- and EHD3-dependent rapid-recycling pathway - Waxmonsky, Nicole C.; Conner, Sean D.
Protein transport through the endosome is critical for maintaining proper integrin cell surface integrin distribution to support cell adhesion, motility and viability. Here we employ a live-cell imaging approach to evaluate the relationship between integrin function and transport through the early endosome. We discovered that two early endosome factors, AAK1L and EHD3, are critical for αvβ3-integrin-mediated cell adhesion in HeLa cells. siRNA-mediated depletion of either factor delays short-loop β3 integrin recycling from the early endosome back to the cell surface. Total internal reflection fluorescence-based colocalization analysis reveals that β3 integrin transits AAK1L- and EHD3-positive endosomes near the cell surface, a...

6. Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling - Sailer, Martin H. M.; Gerber, Alexandra; Tostado, Cristóbal; Hutter, Gregor; Cordier, Dominik; Mariani, Luigi; Ritz, Marie-Françoise
Neural stem cells (NSCs) typically show efficient self-renewal and selective differentiation. Their invasion potential, however, is not well studied. In this study, Sox2-positive NSCs from the E14.5 rat cortex were found to be non-invasive and showed only limited migration in vitro. By contrast, FGF2-expanded NSCs showed a strong migratory and invasive phenotype in response to the combination of FGF2 and BMP4. Invasive NSCs expressed Podoplanin (PDPN) and p75NGFR (Ngfr) at the plasma membrane after exposure to FGF2 and BMP4. FGF2 and BMP4 together upregulated the expression of Msx1, Snail1, Snail2, Ngfr, which are all found in neural crest (NC) cells...

7. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes - Liu, Weiyi; Shan, Tizhong; Yang, Xin; Liang, Sandra; Zhang, Pengpeng; Liu, Yaqin; Liu, Xiaoqi; Kuang, Shihuan
A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes...

8. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres - Bisht, Kamlesh K.; Daniloski, Zharko; Smith, Susan
Sister chromatid cohesion relies on cohesin, a complex comprising a tri-partite ring and a peripheral subunit Scc3, which is found as two related isoforms SA1 and SA2 in vertebrates. There is a division of labor between the vertebrate cohesin complexes; SA1-cohesin is required at telomeres and SA2-cohesin at centromeres. Depletion of SA1 has dramatic consequences for telomere function and genome integrity, but the mechanism by which SA1-cohesin mediates cohesion at telomeres is not well understood. Here we dissect the individual contribution of SA1 and the ring subunits to telomere cohesion and show that telomeres rely heavily on SA1 and to...

9. ε-tubulin is essential in Tetrahymena thermophila for the assembly and stability of basal bodies - Ross, Ian; Clarissa, Christina; Giddings, Thomas H.; Winey, Mark
Basal bodies and centrioles are conserved microtubule-based organelles the improper assembly of which leads to a number of diseases, including ciliopathies and cancer. Tubulin family members are conserved components of these structures that are integral to their proper formation and function. We have identified the ε-tubulin gene in Tetrahymena thermophila and detected the protein, through fluorescence of a tagged allele, to basal bodies. Immunoelectron microscopy has shown that ε-tubulin localizes primarily to the core microtubule scaffold. A complete genomic knockout of ε-tubulin has revealed that it is an essential gene required for the assembly and maintenance of the triplet microtubule...

10. Flt3L is a novel regulator of skeletal myogenesis - Ge, Yejing; Waldemer, Rachel J.; Nalluri, Ramakrishna; Nuzzi, Paul D.; Chen, Jie
Various cues initiate multiple signaling pathways to regulate the highly coordinated process of skeletal myogenesis. Myoblast differentiation comprises a series of ordered events starting with cell cycle withdrawal and ending with myocyte fusion, with each step probably controlled by multiple extracellular signals and intracellular signaling pathways. Here we report the identification of Fms-like tyrokine kinase 3 ligand (Flt3L) signaling as a novel regulator of skeletal myogenesis. Flt3L is a multifunctional cytokine in immune cells, but its involvement in skeletal muscle formation has not been reported. We found that Flt3L is expressed in C2C12 myoblasts, with levels increasing throughout differentiation. Knockdown...

11. Spatial regulation of RhoC activity defines protrusion formation in migrating cells - Bravo-Cordero, Jose Javier; Sharma, Ved P.; Roh-Johnson, Minna; Chen, Xiaoming; Eddy, Robert; Condeelis, John; Hodgson, Louis
Protrusion formation is the first step that precedes cell movement of motile cells. Spatial control of actin polymerization is necessary to achieve directional protrusion during cell migration. Here we show that the spatial coordinators p190RhoGEF and p190RhoGAP regulate actin polymerization during leading edge protrusions by regulating the actin barbed end distribution and amplitude. The distribution of RhoC activity and proper balance of cofilin activation achieved by p190RhoGEF and p190RhoGAP determines the direction of final protrusive activity. These findings provide a new insight into the dynamic plasticity in the amplitude and distribution of barbed ends, which can be modulated by fine-tuning...

12. The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant - Chen, Chun-Ti; Gubbels, Marc-Jan
The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenesis and organelle partitioning. The molecular control mechanism of this process is poorly understood. Here, we characterized a T. gondii NIMA-related kinase (Nek) ortholog that was identified in a chemical mutagenesis screen. A temperature-sensitive mutant, V-A15, possesses a Cys316Arg mutation in TgNek1 (a novel mutant allele...

13. Dynamic trafficking of STAT5 depends on an unconventional nuclear localization signal - Shin, Ha Youn; Reich, Nancy C.
Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays...

14. The iodide-transport-defect-causing mutation R124H: a δ-amino group at position 124 is critical for maturation and trafficking of the Na+/I− symporter - Paroder, Viktoriya; Nicola, Juan P.; Ginter, Christopher S.; Carrasco, Nancy
Na+/I− symporter (NIS)-mediated active accumulation of I− in thyrocytes is a key step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I− transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report novel findings derived from the thorough characterization of the ITD-causing mutation R124H, located in the second intracellular loop (IL-2). R124H NIS is incompletely glycosylated and colocalizes with endoplasmic reticulum (ER)-resident protein markers. As a result, R124H NIS is not targeted to the plasma membrane and therefore does not...

15. TEM4 is a junctional Rho GEF required for cell–cell adhesion, monolayer integrity and barrier function - Ngok, Siu P.; Geyer, Rory; Kourtidis, Antonis; Mitin, Natalia; Feathers, Ryan; Der, Channing; Anastasiadis, Panos Z.
Signaling events mediated by Rho family GTPases orchestrate cytoskeletal dynamics and cell junction formation. The activation of Rho GTPases is tightly regulated by guanine-nucleotide-exchange factors (GEFs). In this study, we identified a novel Rho-specific GEF called TEM4 (tumor endothelial marker 4) that associates with multiple members of the cadherin–catenin complex and with several cytoskeleton-associated proteins. Depending on confluence, TEM4 localized to either actin stress fibers or areas of cell–cell contact. The junctional localization of TEM4 was independent of actin binding. Depletion of endogenous TEM4 by shRNAs impaired Madin–Darby canine kidney (MDCK) and human umbilical vein endothelial cell (HUVEC) cell junctions,...

16. The role of cyclase-associated protein in regulating actin filament dynamics – more than a monomer-sequestration factor - Ono, Shoichiro
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cell biological events. A variety of actin-regulatory proteins modulate polymerization and depolymerization of actin and contribute to actin cytoskeletal reorganization. Cyclase-associated protein (CAP) is a conserved actin-monomer-binding protein that has been studied for over 20 years. Early studies have shown that CAP sequesters actin monomers; recent studies, however, have revealed more active roles of CAP in actin filament dynamics. CAP enhances the recharging of actin monomers with ATP antagonistically to ADF/cofilin, and also promotes the severing of actin filaments in cooperation with ADF/cofilin. Self-oligomerization and binding to other...

17. Germline deletion of Cetn1 causes infertility in male mice - Avasthi, Prachee; Scheel, Jan Frederik; Ying, Guoxin; Frederick, Jeanne M.; Baehr, Wolfgang; Wolfrum, Uwe
Centrins are calmodulin-like Ca2+-binding proteins that can be found in all ciliated eukaryotic cells from yeast to mammals. Expressed in male germ cells and photoreceptors, centrin 1 (CETN1) resides in the photoreceptor transition zone and connecting cilium. To identify its function in mammals, we deleted Cetn1 by homologous recombination. Cetn1−/− mice were viable and showed no sign of retina degeneration suggesting that CETN1 is nonessential for photoreceptor ciliogenesis or structural maintenance. Phototransduction components localized normally to the Cetn1−/− photoreceptor outer segments, and loss of CETN1 had no effect on light-induced translocation of transducin to the inner segment. Although Cetn1−/− females...

18. Pbx1 restrains myeloid maturation while preserving lymphoid potential in hematopoietic progenitors - Ficara, Francesca; Crisafulli, Laura; Lin, Chenwei; Iwasaki, Masayuki; Smith, Kevin S.; Zammataro, Luca; Cleary, Michael L.
The capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. Conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineage-restricted progenitors in addition to a profound defect in hematopoietic stem cell (HSC) self-renewal. Through analysis of purified progenitor proliferation, differentiation capacity and transcriptional profiling, we demonstrate that Pbx1 regulates the lineage-specific output of multipotent and oligopotent progenitors. In the absence of Pbx1 multipotent progenitor...

19. Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity - Roland, Bartholomew P.; Stuchul, Kimberly A.; Larsen, Samantha B.; Amrich, Christopher G.; VanDemark, Andrew P.; Celotto, Alicia M.; Palladino, Michael J.
Triosephosphate isomerase (TPI) is a glycolytic enzyme that converts dihydroxyacetone phosphate (DHAP) into glyceraldehyde 3-phosphate (GAP). Glycolytic enzyme dysfunction leads to metabolic diseases collectively known as glycolytic enzymopathies. Of these enzymopathies, TPI deficiency is unique in the severity of neurological symptoms. The Drosophila sugarkill mutant closely models TPI deficiency and encodes a protein prematurely degraded by the proteasome. This led us to question whether enzyme catalytic activity was crucial to the pathogenesis of TPI sugarkill neurological phenotypes. To study TPI deficiency in vivo we developed a genomic engineering system for the TPI locus that enables the efficient generation of novel...

20. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo - Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin
Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP–TRPL heteromultimers in cell culture and...

Página de resultados:
 

Busque un recurso