Recursos de colección

PubMed Central (PMC3 - NLM DTD) (3.020.751 recursos)

Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Mostrando recursos 1 - 20 de 1.237

  1. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    Mantuano, Elisabetta; Lam, Michael S.; Shibayama, Masataka; Campana, W. Marie; Gonias, Steven L.
    NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R....

  2. Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission

    Auernheimer, Vera; Lautscham, Lena A.; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Fabry, Ben; Goldmann, Wolfgang H.
    The focal adhesion protein vinculin connects the actin cytoskeleton, through talin and integrins, with the extracellular matrix. Vinculin consists of a globular head and tail domain, which undergo conformational changes from a closed auto-inhibited conformation in the cytoplasm to an open conformation in focal adhesions. Src-mediated phosphorylation has been suggested to regulate this conformational switch. To explore the role of phosphorylation in vinculin activation, we used knock-out mouse embryonic fibroblasts re-expressing different vinculin mutants in traction microscopy, magnetic tweezer microrheology, FRAP and actin-binding assays. Compared to cells expressing wild-type or constitutively active vinculin, we found reduced tractions, cytoskeletal stiffness, adhesion...

  3. Induction of lateral lumens through disruption of a monoleucine-based basolateral-sorting motif in betacellulin

    Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.
    Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of...

  4. Volume regulation and shape bifurcation in the cell nucleus

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.
    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that...

  5. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells

    Tonucci, Facundo M.; Hidalgo, Florencia; Ferretti, Anabela; Almada, Evangelina; Favre, Cristián; Goldenring, James R.; Kaverina, Irina; Kierbel, Arlinet; Larocca, M. Cecilia
    The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus–centrosome–Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to...

  6. Cooperative interactions of LPPR family members in membrane localization and alteration of cellular morphology

    Yu, Panpan; Agbaegbu, Chinyere; Malide, Daniela A.; Wu, Xufeng; Katagiri, Yasuhiro; Hammer, John A.; Geller, Herbert M.
    The lipid phosphate phosphatase-related proteins (LPPRs), also known as plasticity-related genes (PRGs), are classified as a new brain-enriched subclass of the lipid phosphate phosphatase (LPP) superfamily. They induce membrane protrusions, neurite outgrowth or dendritic spine formation in cell lines and primary neurons. However, the exact roles of LPPRs and the mechanisms underlying their effects are not certain. Here, we present the results of a large-scale proteome analysis to determine LPPR1-interacting proteins using co-immunoprecipitation coupled to mass spectrometry. We identified putative LPPR1-binding proteins involved in various biological processes. Most interestingly, we identified the interaction of LPPR1 with its family member LPPR3,...

  7. The miR-199–dynamin regulatory axis controls receptor-mediated endocytosis

    Aranda, Juan F.; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos
    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR...

  8. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury

    Thangavel, Jayakumar; Samanta, Saheli; Rajasingh, Sheeja; Barani, Bahar; Xuan, Yu-Ting; Dawn, Buddhadeb; Rajasingh, Johnson
    Acute lung injury (ALI) during sepsis is characterized by bilateral alveolar infiltrates, lung edema and respiratory failure. Here, we examined the efficacy the DNA methyl transferase (DNMT) inhibitor 5-Aza 2-deoxycytidine (Aza), the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), as well as the combination therapy of Aza and TSA (Aza+TSA) provides in the protection of ALI. In LPS-induced mouse ALI, post-treatment with a single dose of Aza+TSA showed substantial attenuation of adverse lung histopathological changes and inflammation. Importantly, these protective effects were due to substantial macrophage phenotypic changes observed in LPS-stimulated macrophages treated with Aza+TSA as compared with untreated LPS-induced...

  9. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.
    Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only...

  10. Robust hematopoietic progenitor cell commitment in the presence of a conflicting cue

    Shah, Najaf A.; Levesque, Marshall J.; Raj, Arjun; Sarkar, Casim A.
    Hematopoietic lineage commitment is regulated by cytokines and master transcription factors, but it remains unclear how a progenitor cell chooses a lineage in the face of conflicting cues. Through transcript counting in megakaryocyte–erythroid progenitors undergoing erythropoiesis, we show that the expression levels of the pro-erythropoiesis transcription factor EKLF (also known as KLF1) and receptor EpoR are inversely correlated with their pro-megakaryopoiesis counterparts, FLI-1 and TpoR (also known as MPL). Notably, as progenitors commit to the erythrocyte lineage, EpoR is upregulated and TpoR is strongly downregulated, thus boosting the potency of the pro-erythropoiesis cue erythropoietin and effectively eliminating the activity of...

  11. The Exocyst at a Glance

    Wu, Bin; Guo, Wei
    The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.

  12. Identification of RNF168 as a PML nuclear body regulator

    Shire, Kathy; Wong, Andrew I.; Tatham, Michael H.; Anderson, Oliver F.; Ripsman, David; Gulstene, Stephanie; Moffat, Jason; Hay, Ronald T.; Frappier, Lori
    Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted...

  13. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1

    Zhang, Tianyi; Zhou, Qingxiang; Ogmundsdottir, Margret Helga; Möller, Katrin; Siddaway, Robert; Larue, Lionel; Hsing, Michael; Kong, Sek Won; Goding, Colin Ronald; Palsson, Arnar; Steingrimsson, Eirikur; Pignoni, Francesca
    The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a...

  14. Analysis of ER–mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells

    Elgass, Kirstin D.; Smith, Elizabeth A.; LeGros, Mark A.; Larabell, Carolyn A.; Ryan, Michael T.
    Mitochondrial fission is important for organelle transport, quality control and apoptosis. Changes to the fission process can result in a wide variety of neurological diseases. In mammals, mitochondrial fission is executed by the GTPase dynamin-related protein 1 (Drp1; encoded by DNM1L), which oligomerizes around mitochondria and constricts the organelle. The mitochondrial outer membrane proteins Mff, MiD49 (encoded by MIEF2) and MiD51 (encoded by MIEF1) are involved in mitochondrial fission by recruiting Drp1 from the cytosol to the organelle surface. In addition, endoplasmic reticulum (ER) tubules have been shown to wrap around and constrict mitochondria before a fission event. Up to...

  15. Access of torsinA to the inner nuclear membrane is activity dependent and regulated in the endoplasmic reticulum

    Goodchild, Rose E.; Buchwalter, Abigail L.; Naismith, Teresa V.; Holbrook, Kristen; Billion, Karolien; Dauer, William T.; Liang, Chun-Chi; Dear, Mary Lynn; Hanson, Phyllis I.
    TorsinA (also known as torsin-1A) is a membrane-embedded AAA+ ATPase that has an important role in the nuclear envelope lumen. However, most torsinA is localized in the peripheral endoplasmic reticulum (ER) lumen where it has a slow mobility that is incompatible with free equilibration between ER subdomains. We now find that nuclear-envelope-localized torsinA is present on the inner nuclear membrane (INM) and ask how torsinA reaches this subdomain. The ER system contains two transmembrane proteins, LAP1 and LULL1 (also known as TOR1AIP1 and TOR1AIP2, respectively), that reversibly co-assemble with and activate torsinA. Whereas LAP1 localizes on the INM, we show...

  16. Akt signaling dynamics in individual cells

    Gross, Sean M.; Rotwein, Peter
    The protein kinase Akt (for which there are three isoforms) is a key intracellular mediator of many biological processes, yet knowledge of Akt signaling dynamics is limited. Here, we have constructed a fluorescent reporter molecule in a lentiviral delivery system to assess Akt kinase activity at the single cell level. The reporter, a fusion between a modified FoxO1 transcription factor and clover, a green fluorescent protein, rapidly translocates from the nucleus to the cytoplasm in response to Akt stimulation. Because of its long half-life and the intensity of clover fluorescence, the sensor provides a robust readout that can be tracked...

  17. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis

    Hornik, Tamara C.; Vilalta, Anna; Brown, Guy C.
    Some apoptotic processes, such as phosphatidylserine exposure, are potentially reversible and do not necessarily lead to cell death. However, phosphatidylserine exposure can induce phagocytosis of a cell, resulting in cell death by phagocytosis: phagoptosis. Phagoptosis of neurons by microglia might contribute to neuropathology, whereas phagoptosis of tumour cells by macrophages might limit cancer. Here, we examined the mechanisms by which BV-2 microglia killed co-cultured pheochromocytoma (PC12) cells that were either undifferentiated or differentiated into neuronal cells. We found that microglia activated by lipopolysaccharide rapidly phagocytosed PC12 cells. Activated microglia caused reversible phosphatidylserine exposure on and reversible caspase activation in PC12...

  18. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei

    Zhou, Qing; Hu, Huiqing; He, Cynthia Y.; Li, Ziyin
    Adhesion of motile flagella to the cell body in Trypanosoma brucei requires a filamentous cytoskeletal structure termed the flagellum attachment zone (FAZ). Despite its essentiality, the complete molecular composition of the FAZ filament and its roles in FAZ filament assembly remain poorly understood. By localization-based screening, we here identified a new FAZ protein, which we called FAZ2. Knockdown of FAZ2 disrupted the FAZ filament, destabilized multiple FAZ filament proteins and caused a cytokinesis defect. We also showed that FAZ2 depletion destabilized another new FAZ filament protein and several flagellum and cytoskeleton proteins. Furthermore, we identified CC2D and KMP11 as FAZ2...

  19. CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain

    Vingtdeux, Valérie; Chandakkar, Pallavi; Zhao, Haitian; Blanc, Lionel; Ruiz, Santiago; Marambaud, Philippe
    Alzheimer's disease is characterized by amyloid-β (Aβ) peptide accumulation in the brain. CALHM1, a cell-surface Ca2+ channel expressed in brain neurons, has anti-amyloidogenic properties in cell cultures. Here, we show that CALHM1 controls Aβ levels in vivo in the mouse brain through a previously unrecognized mechanism of regulation of Aβ clearance. Using pharmacological and genetic approaches in cell lines, we found that CALHM1 ion permeability and extracellular Ca2+ were required for the Aβ-lowering effect of CALHM1. Aβ level reduction by CALHM1 could be explained by an increase in extracellular Aβ degradation by insulin-degrading enzyme (IDE), extracellular secretion of which was...

  20. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation

    Hou, Xiaojing; Zhang, Liang; Han, Longsen; Ge, Juan; Ma, Rujun; Zhang, Xuesen; Moley, Kelle; Schedl, Tim; Wang, Qiang
    Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1–PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels,...

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.