Sunday, June 21, 2015

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía
 

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,833,227 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Mostrando recursos 1 - 20 de 1,122

1. Interphase phosphorylation of lamin A - Kochin, Vitaly; Shimi, Takeshi; Torvaldson, Elin; Adam, Stephen A.; Goldman, Anne; Pack, Chan-Gi; Melo-Cardenas, Johanna; Imanishi, Susumu Y.; Goldman, Robert D.; Eriksson, John E.
Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis – including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results...

2. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway - Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E.; del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A.; Lavandero, Sergio
Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca2+,...

3. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo - Alimperti, Stella; You, Hui; George, Teresa; Agarwal, Sandeep K.; Andreadis, Stelios T.
Although soluble factors, such as transforming growth factor β1 (TGF-β1), induce mesenchymal stem cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage, the role of adherens junctions in this process is not well understood. In this study, we found that cadherin-11 but not cadherin-2 was necessary for MSC differentiation into SMCs. Cadherin-11 regulated the expression of TGF-β1 and affected SMC differentiation through a pathway that was dependent on TGF-β receptor II (TGFβRII) but independent of SMAD2 or SMAD3. In addition, cadherin-11 activated the expression of serum response factor (SRF) and SMC proteins through the Rho-associated protein kinase (ROCK) pathway....

4. The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho–ROCK pathway - McGrail, Daniel J.; Kieu, Quang Minh N.; Dawson, Michelle R.
Although current treatments for localized ovarian cancer are highly effective, this cancer still remains the most lethal gynecological malignancy, largely owing to the fact that it is often detected only after tumor cells leave the primary tumor. Clinicians have long noted a clear predilection for ovarian cancer to metastasize to the soft omentum. Here, we show that this tropism is due not only to chemical signals but also mechanical cues. Metastatic ovarian cancer cells (OCCs) preferentially adhere to soft microenvironments and display an enhanced malignant phenotype, including increased migration, proliferation and chemoresistance. To understand the cell–matrix interactions that are used...

5. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion - Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F. G.; Torres, Vicente A.
Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast...

6. Regulation of Rac1 translocation and activation by membrane domains and their boundaries - Moissoglu, Konstadinos; Kiessling, Volker; Wan, Chen; Hoffman, Brenton D.; Norambuena, Andres; Tamm, Lukas K.; Schwartz, Martin Alexander
The activation of Rac1 and related Rho GTPases involves dissociation from Rho GDP-dissociation inhibitor proteins and translocation to membranes, where they bind effectors. Previous studies have suggested that the binding of Rac1 to membranes requires, and colocalizes with, cholesterol-rich liquid-ordered (lo) membrane domains (lipid rafts). Here, we have developed a fluorescence resonance energy transfer (FRET) assay that robustly detects Rac1 membrane targeting in living cells. Surprisingly, FRET with acceptor constructs that were targeted to either raft or non-raft areas indicated that Rac1 was present in both regions. Functional studies showed that Rac1 localization to non-raft regions decreased GTP loading as...

7. Pleiotrophin antagonizes Brd2 during neuronal differentiation - Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J.; Garcia-Dominguez, Mario
Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing...

8. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure - Itoh, Keiji; Ossipova, Olga; Sokol, Sergei Y.
Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different developmental stages revealed abnormal cell intercalation and apical constriction, suggesting that GEF-H1 regulates these cell behaviors. Molecular marker analysis documented defects in myosin II light chain (MLC) phosphorylation, Rab11 and F-actin accumulation in GEF-H1-depleted cells. In gain-of-function studies, overexpressed GEF-H1 induced Rho-associated kinase-dependent...

9. Tight coupling between nucleus and cell migration through the perinuclear actin cap - Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis
Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic...

10. Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation - Wang, Ting; Yanger, Kilangsungla; Stanger, Ben Z.; Cassio, Doris; Bi, Erfei
By definition, all epithelial cells have apical–basal polarity, but it is unclear how epithelial polarity is acquired and how polarized cells engage in tube formation. Here, we show that hepatocyte polarization is linked to cytokinesis using the rat hepatocyte cell line Can 10. Before abscission, polarity markers are delivered to the site of cell division in a strict spatiotemporal order. Immediately after abscission, daughter cells remain attached through a unique disc-shaped structure, which becomes the site for targeted exocytosis, resulting in the formation of a primitive bile canaliculus. Subsequently, oriented cell division and asymmetric cytokinesis occur at the bile canaliculus...

11. Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin - Levay, Konstantin; Slepak, Vladlen Z.
The Ca2+-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca2+-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of...

12. Basal body proteins regulate Notch signaling through endosomal trafficking - Leitch, Carmen C.; Lodh, Sukanya; Prieto-Echagüe, Victoria; Badano, Jose L.; Zaghloul, Norann A.
Proteins associated with primary cilia and basal bodies mediate numerous signaling pathways, but little is known about their role in Notch signaling. Here, we report that loss of the Bardet-Biedl syndrome proteins BBS1 or BBS4 produces increased Notch-directed transcription in a zebrafish reporter line and in human cell lines. Pathway overactivation is accompanied by reduced localization of Notch receptor at both the plasma membrane and the cilium. In Drosophila mutants, overactivation of Notch can result from receptor accumulation in endosomes, and recent studies implicate ciliary proteins in endosomal trafficking, suggesting a possible mechanism by which overactivation occurs in BBS mutants....

13. Cdk5 activity in the brain – multiple paths of regulation - Shah, Kavita; Lahiri, Debomoy K.
Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and...

14. The TLR and IL-1 signalling network at a glance - Cohen, Philip
Toll-like receptors (TLRs) and the receptors for interleukin (IL)-1, IL-18 and IL-33 are required for defence against microbial pathogens but, if hyper-activated or not switched off efficiently, can cause tissue damage and inflammatory and autoimmune diseases. Understanding how the checks and balances in the system are integrated to fight infection without the network operating out of control will be crucial for the development of improved drugs to treat these diseases in the future. In this Cell Science at a Glance article and the accompanying poster, I provide a brief overview of how one of these intricate networks is controlled by...

15. The endocytic activity of the flagellar pocket in Trypanosoma brucei is regulated by an adjacent phosphatidylinositol phosphate kinase - Demmel, Lars; Schmidt, Katy; Lucast, Louise; Havlicek, Katharina; Zankel, Armin; Koestler, Tina; Reithofer, Viktoria; de Camilli, Pietro; Warren, Graham
Phosphoinositides are spatially restricted membrane signaling molecules. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] – a phosphoinositide that is highly enriched in, and present throughout, the plasma membrane – has been implicated in endocytosis. Trypanosoma brucei has one of the highest known rates of endocytosis, a process it uses to evade the immune system. To determine whether phosphoinositides play a role in endocytosis in this organism, we have identified and characterized one of the enzymes that is responsible for generating PI(4,5)P2. Surprisingly, this phosphoinositide was found to be highly concentrated in the flagellar pocket, the only site of endocytosis and exocytosis in this organism....

16. Different roles of cadherins in the assembly and structural integrity of the desmosome complex - Lowndes, Molly; Rakshit, Sabyasachi; Shafraz, Omer; Borghi, Nicolas; Harmon, Robert M.; Green, Kathleen J.; Sivasankar, Sanjeevi; Nelson, W. James
Adhesion between cells is established by the formation of specialized intercellular junctional complexes, such as desmosomes. Desmosomes contain isoforms of two members of the cadherin superfamily of cell adhesion proteins, desmocollins (Dsc) and desmogleins (Dsg), but their combinatorial roles in desmosome assembly are not understood. To uncouple desmosome assembly from other cell–cell adhesion complexes, we used micro-patterned substrates of Dsc2aFc and/or Dsg2Fc and collagen IV; we show that Dsc2aFc, but not Dsg2Fc, was necessary and sufficient to recruit desmosome-specific desmoplakin into desmosome puncta and produce strong adhesive binding. Single-molecule force spectroscopy showed that monomeric Dsc2a, but not Dsg2, formed Ca2+-dependent...

17. CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells - Grudzien-Nogalska, Ewa; Reed, Brent C.; Rhoads, Robert E.
Downregulation of CPEB1, a sequence-specific RNA-binding protein, in a mouse mammary epithelial cell line (CID-9) causes epithelial-to-mesenchymal transition (EMT), based on several criteria. First, CPEB1 knockdown decreases protein levels of E-cadherin and β-catenin but increases those of vimentin and Twist1. Second, the motility of CPEB1-depleted cells is increased. Third, CID-9 cells normally form growth-arrested, polarized and three-dimensional acini upon culture in extracellular matrix, but CPEB1-deficient CID-9 cells form nonpolarized proliferating colonies lacking a central cavity. CPEB1 downregulates Twist1 expression by binding to its mRNA, shortening its poly(A) tract and repressing its translation. CID-9 cultures contain both myoepithelial and luminal epithelial...

18. MicroRNA-30a regulates zebrafish myogenesis through targeting the transcription factor Six1 - O'Brien, Jenean H.; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Ford, Heide L.
Precise spatiotemporal regulation of the SIX1 homeoprotein is required to coordinate vital tissue development, including myogenesis. Whereas SIX1 is downregulated in most tissues following embryogenesis, it is re-expressed in numerous cancers, including tumors derived from muscle progenitors. Despite crucial roles in development and disease, the upstream regulation of SIX1 expression has remained elusive. Here, we identify the first direct mechanism for Six1 regulation in embryogenesis, through microRNA30a (miR30a)-mediated repression. In zebrafish somites, we show that miR30a and six1a and six1b (hereafter six1a/b) are expressed in an inverse temporal pattern. Overexpression of miR30a leads to a reduction in six1a/b levels, and...

19. Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila - Villa-Cuesta, Eugenia; Holmbeck, Marissa A.; Rand, David M.
Downregulation of the mammalian target of rapamycin (mTOR) pathway by its inhibitor rapamycin is emerging as a potential pharmacological intervention that mimics the beneficial effects of dietary restriction. Modulation of mTOR has diverse effects on mitochondrial metabolism and biogenesis, but the role of the mitochondrial genotype in mediating these effects remains unknown. Here, we use novel mitochondrial genome replacement strains in Drosophila to test the hypothesis that genes encoded in mitochondrial DNA (mtDNA) influence the mTOR pathway. We show that rapamycin increases mitochondrial respiration and succinate dehydrogenase activity, decreases H2O2 production and generates distinct shifts in the metabolite profiles of...

20. Procaspase-3 regulates fibronectin secretion and influences adhesion, migration and survival independently of catalytic function - Brentnall, Matthew; Weir, David B.; Rongvaux, Anthony; Marcus, Adam I.; Boise, Lawrence H.
Caspase-3 is an effector caspase that is activated downstream of mitochondrial outer-membrane permeabilization (MOMP) during apoptosis. However, previous work has demonstrated that caspase-3-deficient mouse embryonic fibroblasts (MEFs) are resistant to mitochondrially mediated cell death and display a delay in the mitochondrial events of apoptosis, including Bax activation, MOMP and release of cytochrome c. Here, we show that caspase-3 regulates fibronectin secretion and impacts on cell morphology, adhesion and migration. Surprisingly, the catalytic activity of caspase-3 is not required for these non-apoptotic functions. Moreover, we found that caspase-3-deficient MEFs are not resistant to death by anoikis and that exogenous fibronectin protects...

Página de resultados:
 

Busque un recurso