Recursos de colección
Project Euclid (Hosted at Cornell University Library) (198.174 recursos)
Osaka Journal of Mathematics
Osaka Journal of Mathematics
Bujalance, E.; Etayo, J.J.; Martínez, E.
In this paper, we obtain the groups of automorphisms of orientable bordered Klein surfaces of topological genus $2$. For each of those groups $G$ we determine the values of $k$ such that $G$ acts on a surface with $k$ boundary components. Besides, for each given $k$ we exhibit the groups acting on a surface with $k$ boundary components.
Bujalance, E.; Etayo, J.J.; Martínez, E.
In this paper, we obtain the groups of automorphisms of orientable bordered Klein surfaces of topological genus $2$. For each of those groups $G$ we determine the values of $k$ such that $G$ acts on a surface with $k$ boundary components. Besides, for each given $k$ we exhibit the groups acting on a surface with $k$ boundary components.
Bujalance, E.; Etayo, J.J.; Martínez, E.
In this paper, we obtain the groups of automorphisms of orientable bordered Klein surfaces of topological genus $2$. For each of those groups $G$ we determine the values of $k$ such that $G$ acts on a surface with $k$ boundary components. Besides, for each given $k$ we exhibit the groups acting on a surface with $k$ boundary components.
Bujalance, E.; Etayo, J.J.; Martínez, E.
In this paper, we obtain the groups of automorphisms of orientable bordered Klein surfaces of topological genus $2$. For each of those groups $G$ we determine the values of $k$ such that $G$ acts on a surface with $k$ boundary components. Besides, for each given $k$ we exhibit the groups acting on a surface with $k$ boundary components.
Grant, Mark; SZŰCS, András; Terpai, Tamás
It is known that neither immersions nor maps with a fixed finite set of multisingularities are enough to realize all mod $2$ homology classes in manifolds. In this paper we define the notion of realizing a homology class up to cobordism; it is shown that for realization in this weaker sense immersions are sufficient, but maps with a fixed finite set of multisingularities are still insufficient.
Grant, Mark; SZŰCS, András; Terpai, Tamás
It is known that neither immersions nor maps with a fixed finite set of multisingularities are enough to realize all mod $2$ homology classes in manifolds. In this paper we define the notion of realizing a homology class up to cobordism; it is shown that for realization in this weaker sense immersions are sufficient, but maps with a fixed finite set of multisingularities are still insufficient.
Grant, Mark; SZŰCS, András; Terpai, Tamás
It is known that neither immersions nor maps with a fixed finite set of multisingularities are enough to realize all mod $2$ homology classes in manifolds. In this paper we define the notion of realizing a homology class up to cobordism; it is shown that for realization in this weaker sense immersions are sufficient, but maps with a fixed finite set of multisingularities are still insufficient.
Grant, Mark; SZŰCS, András; Terpai, Tamás
It is known that neither immersions nor maps with a fixed finite set of multisingularities are enough to realize all mod $2$ homology classes in manifolds. In this paper we define the notion of realizing a homology class up to cobordism; it is shown that for realization in this weaker sense immersions are sufficient, but maps with a fixed finite set of multisingularities are still insufficient.
Kumar, Raj; SAH, Ashok K.
In this paper, we consider the perturbation problem of irregular Weyl-Heisenberg wave packet frame $\{D_{a_j}T_{bk}E_{c_m}\psi\}_{j,k,m\in \mathbb{Z}}$ about dilation, translation and modulation parameters. We give a method to determine whether the perturbation systems is a frame for wave packet functions whose Fourier transforms have small support and prove the stability about dilation parameter on Paley-Wiener space. For a wave packet function, we give a definite answer to the stability about translation parameter $b$.
Kumar, Raj; SAH, Ashok K.
In this paper, we consider the perturbation problem of irregular Weyl-Heisenberg wave packet frame $\{D_{a_j}T_{bk}E_{c_m}\psi\}_{j,k,m\in \mathbb{Z}}$ about dilation, translation and modulation parameters. We give a method to determine whether the perturbation systems is a frame for wave packet functions whose Fourier transforms have small support and prove the stability about dilation parameter on Paley-Wiener space. For a wave packet function, we give a definite answer to the stability about translation parameter $b$.
Kumar, Raj; SAH, Ashok K.
In this paper, we consider the perturbation problem of irregular Weyl-Heisenberg wave packet frame $\{D_{a_j}T_{bk}E_{c_m}\psi\}_{j,k,m\in \mathbb{Z}}$ about dilation, translation and modulation parameters. We give a method to determine whether the perturbation systems is a frame for wave packet functions whose Fourier transforms have small support and prove the stability about dilation parameter on Paley-Wiener space. For a wave packet function, we give a definite answer to the stability about translation parameter $b$.
Kumar, Raj; SAH, Ashok K.
In this paper, we consider the perturbation problem of irregular Weyl-Heisenberg wave packet frame $\{D_{a_j}T_{bk}E_{c_m}\psi\}_{j,k,m\in \mathbb{Z}}$ about dilation, translation and modulation parameters. We give a method to determine whether the perturbation systems is a frame for wave packet functions whose Fourier transforms have small support and prove the stability about dilation parameter on Paley-Wiener space. For a wave packet function, we give a definite answer to the stability about translation parameter $b$.
Hoshi, Yuichiro
Let $p$ be an odd prime number, $W$ an {\it absolutely unramified} $p$-adically complete discrete valuation ring with algebraically closed residue field, and $X$ a curve of genus at least two over the field of fractions $K$ of $W$. In the present paper, we study, under the assumption that $X$ has {\it stable reduction} over $W$, {\it torsion points} on $X$, i.e., torsion points of the Jacobian variety $J$ of $X$ which lie on the image of the Albanese embedding $X\hookrightarrow J$ with respect to a $K$-rational point of $X$. A consequence of the main result of the present paper...
Hoshi, Yuichiro
Let $p$ be an odd prime number, $W$ an {\it absolutely unramified} $p$-adically complete discrete valuation ring with algebraically closed residue field, and $X$ a curve of genus at least two over the field of fractions $K$ of $W$. In the present paper, we study, under the assumption that $X$ has {\it stable reduction} over $W$, {\it torsion points} on $X$, i.e., torsion points of the Jacobian variety $J$ of $X$ which lie on the image of the Albanese embedding $X\hookrightarrow J$ with respect to a $K$-rational point of $X$. A consequence of the main result of the present paper...
Hoshi, Yuichiro
Let $p$ be an odd prime number, $W$ an {\it absolutely unramified} $p$-adically complete discrete valuation ring with algebraically closed residue field, and $X$ a curve of genus at least two over the field of fractions $K$ of $W$. In the present paper, we study, under the assumption that $X$ has {\it stable reduction} over $W$, {\it torsion points} on $X$, i.e., torsion points of the Jacobian variety $J$ of $X$ which lie on the image of the Albanese embedding $X\hookrightarrow J$ with respect to a $K$-rational point of $X$. A consequence of the main result of the present paper...
Hoshi, Yuichiro
Let $p$ be an odd prime number, $W$ an {\it absolutely unramified} $p$-adically complete discrete valuation ring with algebraically closed residue field, and $X$ a curve of genus at least two over the field of fractions $K$ of $W$. In the present paper, we study, under the assumption that $X$ has {\it stable reduction} over $W$, {\it torsion points} on $X$, i.e., torsion points of the Jacobian variety $J$ of $X$ which lie on the image of the Albanese embedding $X\hookrightarrow J$ with respect to a $K$-rational point of $X$. A consequence of the main result of the present paper...
Boldt, Sebastian
We present a spectral rigidity result for the Dirac operator on lens spaces. More specifically, we show that each homogeneous lens space and each three dimensional lens space $L(q;p)$ with $q$ prime is completely characterized by its Dirac spectrum in the class of all lens spaces.
Boldt, Sebastian
We present a spectral rigidity result for the Dirac operator on lens spaces. More specifically, we show that each homogeneous lens space and each three dimensional lens space $L(q;p)$ with $q$ prime is completely characterized by its Dirac spectrum in the class of all lens spaces.
Boldt, Sebastian
We present a spectral rigidity result for the Dirac operator on lens spaces. More specifically, we show that each homogeneous lens space and each three dimensional lens space $L(q;p)$ with $q$ prime is completely characterized by its Dirac spectrum in the class of all lens spaces.
Boldt, Sebastian
We present a spectral rigidity result for the Dirac operator on lens spaces. More specifically, we show that each homogeneous lens space and each three dimensional lens space $L(q;p)$ with $q$ prime is completely characterized by its Dirac spectrum in the class of all lens spaces.