Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2.987.316 recursos)

Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Journal of Bacteriology

Mostrando recursos 1 - 20 de 95.535

  1. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    Valente, Rita S.; Xavier, Karina B.
    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes...

  2. Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica

    Anonsen, Jan Haug; Vik, Åshild; Børud, Bente; Viburiene, Raimonda; Aas, Finn Erik; Kidd, Shani W. A.; Aspholm, Marina; Koomey, Michael
    Broad-spectrum O-linked protein glycosylation is well characterized in the major Neisseria species of importance to human health and disease. Within strains of Neisseria gonorrhoeae, N. meningitidis, and N. lactamica, protein glycosylation (pgl) gene content and the corresponding oligosaccharide structure are fairly well conserved, although intra- and interstrain variability occurs. The status of such systems in distantly related commensal species, however, remains largely unexplored. Using a strain of deeply branching Neisseria elongata subsp. glycolytica, a heretofore unrecognized tetrasaccharide glycoform consisting of di-N-acetylbacillosamine-glucose-di-N-acetyl hexuronic acid-N-acetylhexosamine (diNAcBac-Glc-diNAcHexA-HexNAc) was identified. Directed mutagenesis, mass spectrometric analysis, and glycan serotyping confirmed that the oligosaccharide is an...

  3. Global and Targeted Lipid Analysis of Gemmata obscuriglobus Reveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane

    Mahat, Rajendra; Seebart, Corrine; Basile, Franco; Ward, Naomi L.
    Planctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomycete Gemmata obscuriglobus. We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry...

  4. Article of Significant Interest Selected from This Issue by the Editors

  5. A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene

    Ghosh, Shreya; Samaddar, Sourabh; Kirtania, Prithwiraj; Das Gupta, Sujoy K.
    Mycobacterium species such as M. smegmatis and M. tuberculosis encode at least two translesion synthesis (TLS) polymerases, DinB1 and DinB2, respectively. Although predicted to be linked to DNA repair, their role in vivo remains enigmatic. M. smegmatis mc2155, a strain commonly used to investigate mycobacterial genetics, has two copies of dinB2, the gene that codes for DinB2, by virtue of a 56-kb chromosomal duplication. Expression of a mycobacteriophage D29 gene (gene 50) encoding a class II ribonucleotide reductase in M. smegmatis ΔDRKIN, a strain derived from mc2155 in which one copy of the duplication is lost, resulted in DNA replication...

  6. Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae

    Pant, Archana; Anbumani, D; Bag, Satyabrata; Mehta, Ojasvi; Kumar, Pawan; Saxena, Shruti; Nair, G. Balakrish; Das, Bhabatosh
    The genesis of toxigenic Vibrio cholerae involves acquisition of CTXϕ, a single-stranded DNA (ssDNA) filamentous phage that encodes cholera toxin (CT). The phage exploits host-encoded tyrosine recombinases (XerC and XerD) for chromosomal integration and lysogenic conversion. The replicative genome of CTXϕ produces ssDNA by rolling-circle replication, which may be used either for virion production or for integration into host chromosome. Fine-tuning of different ssDNA binding protein (Ssb) levels in the host cell is crucial for cellular functioning and important for CTXϕ integration. In this study, we mutated the master regulator gene of SOS induction, lexA, of V. cholerae because of...

  7. Gliding Direction of Mycoplasma mobile

    Morio, Hanako; Kasai, Taishi; Miyata, Makoto
    Mycoplasma mobile glides in the direction of its cell pole by a unique mechanism in which hundreds of legs, each protruding from its own gliding unit, catch, pull, and release sialylated oligosaccharides fixed on a solid surface. In this study, we found that 77% of cells glided to the left with a change in direction of 8.4° ± 17.6° μm−1 displacement. The cell body did not roll around the cell axis, and elongated, thinner cells also glided while tracing a curved trajectory to the left. Under viscous conditions, the range of deviation of the gliding direction decreased. In the presence...

  8. Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium Alicyclobacillus tengchongensis

    Ding, Jun-Mei; Yu, Ting-Ting; Han, Nan-Yu; Yu, Jia-Lin; Li, Jun-Jun; Yang, Yun-Juan; Tang, Xiang-Hua; Xu, Bo; Zhou, Jun-Pei; Tang, Hong-Zhi; Huang, Zun-Xi
    Deacetylation of 7-aminocephalosporanic acid (7-ACA) at position C-3 provides valuable starting material for producing semisynthetic β-lactam antibiotics. However, few enzymes have been characterized in this process before now. Comparative analysis of the genome of the thermophilic bacterium Alicyclobacillus tengchongensis revealed a hypothetical protein (EstD1) with typical esterase features. The EstD1 protein was functionally cloned, expressed, and purified from Escherichia coli BL21(DE3). It indeed displayed esterase activity, with optimal activity at around 65°C and pH 8.5, with a preference for esters with short-chain acyl esters (C2 to C4). Sequence alignment revealed that EstD1 is an SGNH hydrolase with the putative catalytic...

  9. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
    A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of...

  10. The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System

    Epstein, Wolfgang
    Kdp, one of three saturable K+ uptake systems in Escherichia coli, is the system with the highest affinity for K+ and the only one whose expression is strongly controlled by medium K+ concentration. Expression is controlled by a two-component system of KdpD, the sensor kinase, and KdpE, the response regulator. There is general agreement that expression occurs when the growth rate of cells begins to become limited by K+ availability. How K+ limitation results in expression has been controversial. Studying the roles of the major components of the growth medium shows that KdpD senses at least two distinct signals inside...

  11. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR

    Willsey, Graham G.; Wargo, Matthew J.
    Sarcosine (N-methylglycine) is present in many environments inhabited by pseudomonads and is likely most often encountered as an intermediate in the metabolism of choline, carnitine, creatine, and glyphosate. While the enzymology of sarcosine metabolism has been relatively well studied in bacteria, the regulatory mechanisms governing catabolism have remained largely unknown. We previously determined that the sarcosine-catabolic (sox) operon of Pseudomonas aeruginosa is induced by the AraC family regulator GbdR in response to glycine betaine and dimethylglycine. However, induction of these genes was still observed in response to sarcosine in a gbdR deletion mutant, indicating that an independent sarcosine-responsive transcription factor...

  12. Mutation of the Thiol-Disulfide Oxidoreductase SdbA Activates the CiaRH Two-Component System, Leading to Bacteriocin Expression Shutdown in Streptococcus gordonii

    Davey, Lauren; Halperin, Scott A.; Lee, Song F.
    Streptococcus gordonii is a commensal inhabitant of the human oral cavity. To maintain its presence as a major component of oral biofilms, S. gordonii secretes inhibitory molecules such as hydrogen peroxide and bacteriocins to inhibit competitors. S. gordonii produces two nonmodified bacteriocins (i.e., Sth1 and Sth2) that are regulated by the Com two-component regulatory system, which also regulates genetic competence. Previously we found that the thiol-disulfide oxidoreductase SdbA was required for bacteriocin activity; however, the role of SdbA in Com signaling was not clear. Here we demonstrate that ΔsdbA mutants lacked bacteriocin activity because the bacteriocin gene sthA was strongly...

  13. The C-Terminal Zwitterionic Sequence of CotB1 Is Essential for Biosilicification of the Bacillus cereus Spore Coat

    Motomura, Kei; Ikeda, Takeshi; Matsuyama, Satoshi; Abdelhamid, Mohamed A. A.; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio
    Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a...

  14. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters

    Hayashi, Katsuhiko; Nakashima, Ryosuke; Sakurai, Keisuke; Kitagawa, Kimie; Yamasaki, Seiji; Nishino, Kunihiko; Yamaguchi, Akihito
    The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the...

  15. Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns

    Rosario, Christopher J.; Tan, Ming
    Chlamydia is a genus of pathogenic bacteria with an unusual intracellular developmental cycle marked by temporal waves of gene expression. The three main temporal groups of chlamydial genes are proposed to be controlled by separate mechanisms of transcriptional regulation. However, we have noted genes with discrepancies, such as the early gene dnaK and the midcycle genes bioY and pgk, which have promoters controlled by the late transcriptional regulators EUO and σ28. To resolve this issue, we analyzed the promoters of these three genes in vitro and in Chlamydia trachomatis bacteria grown in cell culture. Transcripts from the σ28-dependent promoter of...

  16. Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System

    Hanawa, Tomoko; Kamachi, Kazunari; Yonezawa, Hideo; Fukutomi, Toshiyuki; Kawakami, Hayato; Kamiya, Shigeru
    Bordetella pertussis is a bacterium that is considered to be highly adapted to humans, and it has not been isolated from the environment. As this bacterium does not utilize sugars, the abundant supply of glutamate in Stainer Scholte (SS) medium enables B. pertussis to grow efficiently in liquid culture in vitro, and as such, SS medium is a popular choice for laboratory experiments. However, the concentration of glutamate in the in vivo niche of B. pertussis is quite low. We investigated the bacterial response to low concentrations of glutamate to elucidate bacterial physiology via the expression of the type 3...

  17. Editorial Board

  18. Tobramycin-Treated Pseudomonas aeruginosa PA14 Enhances Streptococcus constellatus 7155 Biofilm Formation in a Cystic Fibrosis Model System

    Price, Katherine E.; Naimie, Amanda A.; Griffin, Edward F.; Bay, Charles; O'Toole, George A.
    Cystic fibrosis (CF) is a human genetic disorder which results in a lung environment that is highly conducive to chronic microbial infection. Over the past decade, deep-sequencing studies have demonstrated that the CF lung can harbor a highly diverse polymicrobial community. We expanded our existing in vitro model of Pseudomonas aeruginosa biofilm formation on CF-derived airway cells to include this broader set of CF airway colonizers to investigate their contributions to CF lung disease, particularly as they relate to the antibiotic response of the population. Using this system, we identified an interspecies interaction between P. aeruginosa, a bacterium associated with...

  19. Classic Spotlight: Phage Bring Punch to the Party

    DiRita, Victor J.

  20. Classic Spotlight: Gram-Negative Bacteria Have Two Membranes

    Silhavy, Thomas J.

Aviso de cookies: Usamos cookies propias y de terceros para mejorar nuestros servicios, para análisis estadístico y para mostrarle publicidad. Si continua navegando consideramos que acepta su uso en los términos establecidos en la Política de cookies.