Thursday, August 28, 2014

 

 



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía
 

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,682,410 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Journal of Bacteriology

Mostrando recursos 1 - 20 de 94,843

1. Ght Protein of Neisseria meningitidis Is Involved in the Regulation of Lipopolysaccharide Biosynthesis - Putker, Florian; Grutsch, Andreas; Tommassen, Jan; Bos, Martine P.
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria and is responsible for the barrier function of this membrane. A ght mutant of Neisseria meningitidis that showed increased sensitivity to hydrophobic toxic compounds, suggesting a breach in this permeability barrier, was previously described. Here, we assessed whether this phenotype was possibly caused by a defect in LPS transport or synthesis. The total amount of LPS appeared to be drastically reduced in a ght mutant, but the residual LPS was still detected at the cell surface, suggesting that LPS transport was not impaired. The ght mutant was...

2. Revealing the Genetic Basis of Natural Bacterial Phenotypic Divergence - Freddolino, Peter L.; Goodarzi, Hani; Tavazoie, Saeed
Divergent phenotypes for distantly related strains of bacteria, such as differing antibiotic resistances or organic solvent tolerances, are of keen interest both from an evolutionary perspective and for the engineering of novel microbial organisms and consortia in synthetic biology applications. A prerequisite for any practical application of this phenotypic diversity is knowledge of the genetic determinants for each trait of interest. Sequence divergence between strains is often so extensive as to make brute-force approaches to identifying the loci contributing to a given trait impractical. Here we describe a global linkage analysis approach, GLINT, for rapid discovery of the causal genetic...

3. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis - Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul
Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production...

4. Structural Modeling and Physicochemical Characterization Provide Evidence that P66 Forms a β-Barrel in the Borrelia burgdorferi Outer Membrane - Kenedy, Melisha R.; Luthra, Amit; Anand, Arvind; Dunn, Joshua P.; Radolf, Justin D.; Akins, Darrin R.
The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we...

5. Two Small (p)ppGpp Synthases in Staphylococcus aureus Mediate Tolerance against Cell Envelope Stress Conditions - Geiger, Tobias; Kästle, Benjamin; Gratani, Fabio Lino; Goerke, Christiane; Wolz, Christiane
The stringent response is a conserved global regulatory mechanism that is related to the synthesis of (p)ppGpp nucleotides. Gram-positive bacteria, such as Staphylococcus aureus, possess three (p)ppGpp synthases: the bifunctional RSH (RelA/SpoT homolog) protein, which consists of a (p)ppGpp synthase and a (p)ppGpp hydrolase domain, and two truncated (p)ppGpp synthases, designated RelP and RelQ. Here, we characterized these two small (p)ppGpp synthases. Biochemical analyses of purified proteins and in vivo studies revealed a stronger synthetic activity for RelP than for RelQ. However, both enzymes prefer GDP over GTP as the pyrophosphate recipient to synthesize ppGpp. Each of the enzymes was...

6. Nonredundant Roles for Cytochrome c2 and Two High-Potential Iron-Sulfur Proteins in the Photoferrotroph Rhodopseudomonas palustris TIE-1 - Bird, Lina J.; Saraiva, Ivo H.; Park, Shannon; Calçada, Eduardo O.; Salgueiro, Carlos A.; Nitschke, Wolfgang; Louro, Ricardo O.; Newman, Dianne K.
The purple bacterium Rhodopseudomonas palustris TIE-1 expresses multiple small high-potential redox proteins during photoautotrophic growth, including two high-potential iron-sulfur proteins (HiPIPs) (PioC and Rpal_4085) and a cytochrome c2. We evaluated the role of these proteins in TIE-1 through genetic, physiological, and biochemical analyses. Deleting the gene encoding cytochrome c2 resulted in a loss of photosynthetic ability by TIE-1, indicating that this protein cannot be replaced by either HiPIP in cyclic electron flow. PioC was previously implicated in photoferrotrophy, an unusual form of photosynthesis in which reducing power is provided through ferrous iron oxidation. Using cyclic voltammetry (CV), electron paramagnetic resonance...

7. Cell Growth Inhibition upon Deletion of Four Toxin-Antitoxin Loci from the Megaplasmids of Sinorhizobium meliloti - Milunovic, Branislava; diCenzo, George C.; Morton, Richard A.; Finan, Turlough M.
Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose...

8. Regulation of the Response Regulator Gene degU through the Binding of SinR/SlrR and Exclusion of SinR/SlrR by DegU in Bacillus subtilis - Ogura, Mitsuo; Yoshikawa, Hirofumi; Chibazakura, Taku
Bacillus subtilis DegU is a response regulator of the DegS-DegU two-component regulatory system. Phosphorylated DegU (DegU-P) controls many genes and biological processes, such as exoprotease and γ-polyglutamic acid production, in addition to the degU gene, by binding to target gene promoters. Nonphosphorylated DegU and low levels of DegU-P are required for swarming motility and genetic competence. The DNA-binding repressors SinR and SlrR are part of a double-negative feedback loop and comprise the epigenetic switch governing biofilm formation. In this study, we found that SinR repressed degU. Furthermore, SlrR, which interacts with SinR through protein-protein interaction, seems to have an active...

9. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity - Zhang, Xiaohui; Sherman, Debra M.; Sherman, Louis A.
Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties;...

10. The EutT Enzyme of Salmonella enterica Is a Unique ATP:Cob(I)alamin Adenosyltransferase Metalloprotein That Requires Ferrous Ions for Maximal Activity - Moore, Theodore C.; Mera, Paola E.; Escalante-Semerena, Jorge C.
ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the reaction with sigmoidal kinetics indicative of positive cooperativity for cob(II)alamin. Maximal EutT activity was obtained after metalation with ferrous ions. EutT/Fe(II) protein lost all activity upon exposure to air and H2O2, consistent with previously reported results indicating that EutT was an oxygen-labile metalloprotein...

11. Defects in the Flagellar Motor Increase Synthesis of Poly-γ-Glutamate in Bacillus subtilis - Chan, Jia Mun; Guttenplan, Sarah B.; Kearns, Daniel B.
Bacillus subtilis swims in liquid media and swarms over solid surfaces, and it encodes two sets of flagellar stator homologs. Here, we show that B. subtilis requires only the MotA/MotB stator during swarming motility and that the residues required for stator force generation are highly conserved from the Proteobacteria to the Firmicutes. We further find that mutants that abolish stator function also result in an overproduction of the extracellular polymer poly-γ-glutamate (PGA) to confer a mucoid colony phenotype. PGA overproduction appeared to be the result of an increase in the expression of the pgs operon that encodes genes for PGA...

12. The Integron Integrase Efficiently Prevents the Melting Effect of Escherichia coli Single-Stranded DNA-Binding Protein on Folded attC Sites - Loot, Céline; Parissi, Vincent; Escudero, José Antonio; Amarir-Bouhram, Jihane; Bikard, David; Mazel, Didier
Integrons play a major role in the dissemination of antibiotic resistance genes among bacteria. Rearrangement of gene cassettes occurs by recombination between attI and attC sites, catalyzed by the integron integrase. Integron recombination uses an unconventional mechanism involving a folded single-stranded attC site. This site could be a target for several host factors and more precisely for proteins able to bind single-stranded DNA. One of these, Escherichia coli single-stranded DNA-binding protein (SSB), regulates many DNA processes. We studied the influence of this protein on integron recombination. Our results show the ability of SSB to strongly bind folded attC sites and...

13. Amino-4-Imidazolecarboxamide Ribotide Directly Inhibits Coenzyme A Biosynthesis in Salmonella enterica - Bazurto, Jannell V.; Downs, Diana M.
Aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a by-product of histidine biosynthesis. In bacteria, yeast, and humans, accumulation of AICAR has been shown to affect an array of cellular processes by both direct and indirect mechanisms. In purine biosynthesis, AICAR is the substrate of the bifunctional protein phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (PurH, EC 2.1.2.3/3.5.4.10). Strains lacking PurH accumulate AICAR and have a defect in the synthesis of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine. The formation of HMP is also compromised in vivo when coenzyme A (CoA) levels are reduced. Our results show that the in vivo accumulation of...

14. Response to Metronidazole and Oxidative Stress Is Mediated through Homeostatic Regulator HsrA (HP1043) in Helicobacter pylori - Olekhnovich, Igor N.; Vitko, Serhiy; Valliere, Meaghan; Hoffman, Paul S.
Metronidazole (MTZ) is often used in combination therapies to treat infections caused by the gastric pathogen Helicobacter pylori. Resistance to MTZ results from loss-of-function mutations in genes encoding RdxA and FrxA nitroreductases. MTZ-resistant strains, when cultured at sub-MICs of MTZ (5 to 20 μg/ml), show dose-dependent defects in bacterial growth; depressed activities of many Krebs cycle enzymes, including pyruvate:ferredoxin oxidoreductase (PFOR); and low transcript levels of porGDAB (primer extension), phenotypes consistent with an involvement of a transcriptional regulator. Using a combination of protein purification steps, electrophoretic mobility shift assays (EMSAs), and mass spectrometry analyses of proteins bound to porG promoter...

15. Identification of 3-Sulfinopropionyl Coenzyme A (CoA) Desulfinases within the Acyl-CoA Dehydrogenase Superfamily - Schürmann, Marc; Demming, Rebecca Michaela; Krewing, Marco; Rose, Judith; Wübbeler, Jan Hendrik; Steinbüchel, Alexander
In a previous study, the essential role of 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase acyl-CoA dehydrogenase (Acd) in Advenella mimigardefordensis strain DPN7T (AcdDPN7) during degradation of 3,3′-dithiodipropionic acid (DTDP) was elucidated. DTDP is a sulfur-containing precursor substrate for biosynthesis of polythioesters (PTEs). AcdDPN7 showed high amino acid sequence similarity to acyl-CoA dehydrogenases but was unable to catalyze a dehydrogenation reaction. Hence, it was investigated in the present study whether 3SP-CoA desulfinase activity is an uncommon or a widespread property within the acyl-CoA dehydrogenase superfamily. Therefore, proteins of the acyl-CoA dehydrogenase superfamily from Advenella kashmirensis WT001, Bacillus cereus DSM31, Cupriavidus necator N-1,...

16. Essentiality of DevR/DosR Interaction with SigA for the Dormancy Survival Program in Mycobacterium tuberculosis - Gautam, Uma S.; Sikri, Kriti; Vashist, Atul; Singh, Varshneya; Tyagi, Jaya S.
The DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the SigA −35 element, suggesting that DevR-SigA interaction is required for activating transcription. We evaluated the roles of 14 charged residues of DevR in transcriptional activation under hypoxic stress. Seven of the 14 alanine substitution mutants were defective in regulon activation, of which K191A, R197A, and K179A+K168A (designated K179A*)...

17. Editorial Board

18. The MiaA tRNA Modification Enzyme Is Necessary for Robust RpoS Expression in Escherichia coli - Thompson, Karl M.; Gottesman, Susan
The stationary phase/general stress response sigma factor RpoS (σS) is necessary for adaptation and restoration of homeostasis in stationary phase. As a physiological consequence, its levels are tightly regulated at least at two levels. Multiple small regulatory RNA molecules modulate its translation, in a manner that is dependent on the RNA chaperone Hfq and the rpoS 5′ untranslated region. ClpXP and the RssB adaptor protein degrade RpoS, unless it is protected by an anti-adaptor. We here find that, in addition to these posttranscriptional levels of regulation, tRNA modification also affects the steady-state levels of RpoS. We screened mutants of several...

19. Coordinated Expression of fdxD and Molybdenum Nitrogenase Genes Promotes Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Oxygen - Hoffmann, Marie-Christine; Müller, Alexandra; Fehringer, Maria; Pfänder, Yvonne; Narberhaus, Franz; Masepohl, Bernd
Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contrast, FdxD was not beneficial for diazotrophic growth depending on Fe-nitrogenase. These findings suggest that the 2Fe2S ferredoxin FdxD specifically supports the Mo-nitrogenase system, probably by protecting Mo-nitrogenase against oxygen, as previously...

20. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium - Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M.
Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and...

Página de resultados:
 

Busque un recurso