Recursos de colección
Project Euclid (Hosted at Cornell University Library) (202.644 recursos)
Hokkaido Mathematical Journal
Hokkaido Mathematical Journal
TUMENBAYAR, Khulan; TOKUNAGA, Hiro-o
Let ${\mathcal Q}$ be an irreducible $3$-nodal quartic and let ${\mathcal C}$ be a smooth conic such that ${\mathcal C} \cap {\mathcal Q}$ does not contain any node of ${\mathcal Q}$ and the intersection multiplicity at $z \in {\mathcal C} \cap {\mathcal Q}$ is even for each $z$. In this paper, we study geometry of ${\mathcal C} + {\mathcal Q}$ through that of integral sections of a rational elliptic surface which canonically arises from ${\mathcal Q}$ and $z \in {\mathcal C} \cap {\mathcal Q}$. As an application, we construct Zariski pairs $({\mathcal C}_1 + {\mathcal Q}, {\mathcal C}_2 + {\mathcal...
MIZUKAWA, Hiroshi; YAMADA, Hiro-Fumi
Extending the notion of $r$-(class) regular partitions, we define $(r_{1},\dots,r_{m})$-class regular partitions. Partition identities are presented and described by making use of the Glaisher correspondence.
EUH, Yunhee; PARK, JeongHyeong; SEKIGAWA, Kouei
Any locally rank one Riemannian symmetric space is a harmonic manifold. We give the characteristic function of a Cayley projective plane as a harmonic manifold. The aim of this work is to show the explicit form of the characteristic function of the Cayley projective plane.
BARBERA, Mariacristina; IMBESI, Maurizio; LA BARBIERA, Monica
We study the symmetric algebra of monomial ideals that arise from graphs with loops. The notion of $s$-sequence is investigated for such ideals in order to compute standard algebraic invariants of their symmetric algebra in terms of the corresponding invariants of special quotients of the polynomial ring related to the graphs.
BISWAS, Indranil; MJ, Mahan
Given a compact almost complex manifold, we prove a Castelnuovo–de Franchis type theorem for it.
FAN, Dashan; ZHAO, Fayou
In this paper, we consider that $T(f,g)$ is a bilinear operator satisfying \begin{equation*} |T(f,g)(x)|\preceq \int_{\mathbb{R}^{n}}\frac{|f(x-ty)g(x-y)|}{|y|^{n}}dy \end{equation*} for $x$ such that $0\notin {\rm supp}~(f(x-t\cdot )) \cap {\rm supp}~(g(x+\cdot ))$. We obtain the boundedness of $T(f,g)$ on the Morrey spaces with the assumption of the boundedness of the operator $T(f,g)$ on the Lebesgues spaces. As applications, we yield that many well known bilinear operators, as well as the first Calderón commutator, are bounded from the Morrey spaces $L^{q,\lambda_{1}}\times L^{r,\lambda_{2}}$ to $L^{p,\lambda}$, where $\lambda /p={\lambda_{1}}/{q}+{\lambda_{2}}/{r}$.
KOIKE, Kenji
We study the Schwarz triangle function with the monodromy group $\Delta(7,7,7)$, and we construct its inverse by theta constants. As consequences, we give uniformizations of the Klein quartic curve and the Fermat septic curve as Shimura curves parametrizing Abelian $6$-folds with endomorphisms $\mathbb{Z}[\zeta_7]$.
KOGUCHI, Yuto; MATSUMOTO, Keiji; SETO, Fuko
We consider the Schwarz maps with monodromy groups isomorphic to the triangle groups $(2,4,4)$ and $(2,3,6)$ and their inverses. We apply our formulas to studies of mean iterations.
ITO, Akio
We treat 2D and 3D tumor invasion models with quasi-variational structures, which are composed of two PDEs, one ODE and certain constraint conditions. Although the original model was proposed by M. R. A. Chaplain and A. R. A. Anderson in 2003, the difference between their original model and ours is that the constraint conditions for the distributions of tumor cells and the extracellular matrix are imposed in our model, which give a quasi-variational structure. For 2D and 3D tumor invasion models with quasi-variational structures, we show the existence of global-in-time solutions and consider their large-time behaviors. Especially, for the large-time...
ASBOEI, Alireza Khalili; DARAFSHEH, Mohammad Reza; MOHAMMADYARI, Reza
Let $2^{n}+1 \gt 5$ be a prime number. In this article, we will show $G\cong C_{n}(2)$ if and only if $|G|=|C_{n}(2)|$ and $G$ has a conjugacy class length ${|C_{n}(2)|}/({2^{n}+1})$. Furthermore, we will show Thompson's conjecture is valid under a weak condition for the symplectic groups $C_{n}(2)$.
MIZOTA, Yusuke; NISHIMURA, Takashi
We show that the module of lowerable vector fields for a finitely ${\cal L}$-determined multigerm is finitely generated in a constructive way.
SAWANO, Yoshihiro; SHIMOMURA, Tetsu; TANAKA}, Hitoshi
Morrey norms, which are originally endowed with two parameters, are considered on general metric measure spaces. Volberg, Nazarov and Treil showed that the modified Hardy-Littlewood maximal operator is bounded on Legesgue spaces. The modified Hardy-Littlewood maximal operator is known to be bounded on Morrey spaces on Euclidean spaces, if we introduce the third parameter instead of adopting a natural extension of Morrey spaces. When it comes to geometrically doubling, as long as an auxiliary parameter is introduced suitably, the Morrey norm does not depend on the third parameter and this norm extends naturally the original Morrey norm. If the underlying...
BEDDANI, Hamid; HAMANI, Karima
In this paper, we investigate the order and the hyper-order of meromorphic solutions of the linear differential equation \begin{equation*} f^{(k)}+\sum^{k-1}_{j=1}(D_{j}+B_{j}e^{P_{j}(z) })f^{(j)}+( D_{0}+A_{1}e^{Q_{1}( z)}+A_{2}e^{Q_{2}( z) }) f=0, \end{equation*} where $k\geq 2$ is an integer, $Q_{1}(z),Q_{2}(z)$, $P_{j}(z) $ $(j=1, \dots ,k-1)$ are nonconstant polynomials and $A_{s}(z)$ $(\not\equiv 0)$ $(s=1,2)$, $B_{j}( z)$ $(\not\equiv 0)$ $(j=1, \dots ,k-1)$, $D_{m}(z)$ $(m=0,1, \dots ,k-1)$ are meromorphic functions. Under some conditions, we prove that every meromorphic solution $f$ $(\not\equiv 0)$ of the above equation is of infinite order and we give an estimate of its hyper-order. Furthermore, we obtain a result about the exponent of convergence and...
MATSUMOTO, Shigenori
We shall show that the rotation of some irrational rotation number on the circle admits suspensions which are kinematic expansive.
WADA, Kazuyuki
A quantum system of a massless charged scalar field with a self-interaction is investigated. By introducing a spacial cut-off function, a Hamiltonian of the quantum system is realized as a linear operator on a boson Fock space. Under certain conditions, it is proven that the Hamiltonian is bounded below, self-adjoint and has a ground state for an arbitrary coupling constant. Moreover the Hamiltonian strongly commutes with the total charge operator. This fact implies that the state space of the charged scalar field is decomposed into the infinite direct sum of fixed total charge spaces. A total charge of an eigenstate...
FUKUMA, Yoshiaki; ITO, Kazuhisa
Let $S$ be a smooth complex projective surface of general type, $H$ be a very ample divisor on $S$ and $m(S,H)$ be the class of $(S,H)$. In this paper, we study a lower bound for $m(S,H)-3H^2$ and we improve an inequality obtained by Lanteri. We also study $(S,H)$ with each value of $m(S,H)-3H^2$ and exhibit some examples.
BAKHTYIARI, M.; NIKMEHR, M. J.; NIKANDISH, R.
Let $R$ be a commutative ring with identity, and let $Z(R)$ be the set of zero-divisors of $R$. The extended zero-divisor graph of $R$ is the undirected (simple) graph $\Gamma'(R)$ with the vertex set $Z(R)^*=Z(R)\setminus\{0\}$, and two distinct vertices $x$ and $y$ are adjacent if and only if either $Rx\cap \mathrm{Ann}(y)\neq (0)$ or $Ry\cap \mathrm{Ann}(x)\neq (0)$. In this paper, we continue our study of the extended zero-divisor graph of a commutative ring that was introduced in [4]. We show that the extended zero-divisor graph associated with an Artinian ring is weakly perfect, i.e., its vertex chromatic number equals its clique...
BAKHTYIARI, M.; NIKMEHR, M. J.; NIKANDISH, R.
Let $R$ be a commutative ring with identity, and let $Z(R)$ be the set of zero-divisors of $R$. The extended zero-divisor graph of $R$ is the undirected (simple) graph $\Gamma'(R)$ with the vertex set $Z(R)^*=Z(R)\setminus\{0\}$, and two distinct vertices $x$ and $y$ are adjacent if and only if either $Rx\cap \mathrm{Ann}(y)\neq (0)$ or $Ry\cap \mathrm{Ann}(x)\neq (0)$. It follows that the zero-divisor graph $\Gamma(R)$ is a subgraph of $\Gamma'(R)$. It is proved that $\Gamma'(R)$ is connected with diameter at most two and with girth at most four, if $\Gamma'(R)$ contains a cycle. Moreover, we characterize all rings whose extended zero-divisor graphs...
SHEN, Conghui; XU, Jingshi
In this paper, we obtain a vector valued inequality of multilinear Calderón-Zygmund operators on products of Herz-Morrey spaces with variable exponents.
OGATA, Yuta
We give criteria for singularities of spacelike constant mean curvature surfaces in 3-dimensional de Sitter and anti-de Sitter spaces constructed by the DPW method, which is a generalized Weierstrass representation. We also construct some examples of spacelike CMC surfaces, including analogs of Smyth surfaces with singularities, using appropriate models to visualize them.