Sunday, November 23, 2014



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,719,667 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Antioxidants & Redox Signaling

Mostrando recursos 1 - 20 de 723

1. Lung Injury and Lung Cancer Caused by Cigarette Smoke-Induced Oxidative Stress: Molecular Mechanisms and Therapeutic Opportunities Involving the Ceramide-Generating Machinery and Epidermal Growth Factor Receptor - Goldkorn, Tzipora; Filosto, Simone; Chung, Samuel
Chronic obstructive pulmonary disease (COPD) and lung cancer are frequently caused by tobacco smoking. However, these diseases present opposite phenotypes involving redox signaling at the cellular level. While COPD is characterized by excessive airway epithelial cell death and lung injury, lung cancer is caused by uncontrolled epithelial cell proliferation. Notably, epidemiological studies have demonstrated that lung cancer incidence is significantly higher in patients who have preexisting emphysema/lung injury. However, the molecular link and common cell signaling events underlying lung injury diseases and lung cancer are poorly understood. This review focuses on studies of molecular mechanism(s) underlying smoking-related lung injury (COPD)...

2. Hydrogen Sulfide Targets EGFR Cys797/Cys798 Residues to Induce Na+/K+-ATPase Endocytosis and Inhibition in Renal Tubular Epithelial Cells and Increase Sodium Excretion in Chronic Salt-Loaded Rats - Ge, Shun-Na; Zhao, Man-Man; Wu, Dong-Dong; Chen, Ying; Wang, Yi; Zhu, Jian-Hua; Cai, Wen-Jie; Zhu, Yi-Zhun; Zhu, Yi-Chun
Aims: The role of hydrogen sulfide (H2S) in renal sodium and water homeostasis is unknown. We investigated whether H2S promoted Na+/K+-ATPase endocytosis via the H2S/EGFR/gab1/PI3K/Akt pathway in renal tubular epithelial cells. Results: H2S decreased Na+/K+-ATPase activity and induced its endocytosis in renal tubular epithelial cells, which was abrogated by small interfering RNA (siRNA) knockdown of epidermal growth factor receptor (EGFR) and gab1, a dominant-negative mutant of Akt and PI3K inhibitors. H2S increased EGFR, gab1, PI3K, and Akt phosphorylation in both renal tubular epithelial cells and kidneys of chronic salt-loaded rats. These increases were abrogated by siRNA knockdown of EGFR, but...

3. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery - Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

4. Mitophagy Is Required for Acute Cardioprotection by Simvastatin - Andres, Allen M.; Hernandez, Genaro; Lee, Pamela; Huang, Chengqun; Ratliff, Eric P.; Sin, Jon; Thornton, Christine A.; Damasco, Marichris V.; Gottlieb, Roberta A.

5. The Role of SUMO-1 in Cardiac Oxidative Stress and Hypertrophy - Lee, Ahyoung; Jeong, Dongtak; Mitsuyama, Shinichi; Oh, Jae Gyun; Liang, Lifan; Ikeda, Yoshiyuki; Sadoshima, Junichi; Hajjar, Roger J.; Kho, Changwon

6. Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets - Biasi, Fiorella; Leonarduzzi, Gabriella; Oteiza, Patricia I.; Poli, Giuseppe

7. A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD - Haldar, Swati; Beveridge, ’Alim J.; Wong, Joseph; Singh, Ajay; Galimberti, Daniela; Borroni, Barbara; Zhu, Xiongwei; Blevins, Janis; Greenlee, Justin; Perry, George; Mukhopadhyay, Chinmay K.; Schmotzer, Christine; Singh, Neena

8. Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo - Tao, Shasha; Zheng, Yi; Lau, Alexandria; Jaramillo, Melba C.; Chau, Binh T.; Lantz, R. Clark; Wong, Pak K.; Wondrak, Georg T.; Zhang, Donna D.

9. Human Hp1-1 and Hp2-2 Phenotype-Specific Haptoglobin Therapeutics Are Both Effective In Vitro and in Guinea Pigs to Attenuate Hemoglobin Toxicity - Lipiski, Miriam; Deuel, Jeremy W.; Baek, Jin Hyen; Engelsberger, Wolfgang R.; Buehler, Paul W.; Schaer, Dominik J.

10. Dual Oxidase 2 in Lung Epithelia Is Essential for Hyperoxia-Induced Acute Lung Injury in Mice - Kim, Min-Ji; Ryu, Jae-Chan; Kwon, Younghee; Lee, Suhee; Bae, Yun Soo; Yoon, Joo-Heon; Ryu, Ji-Hwan
Aims: Acute lung injury (ALI) induced by excessive hyperoxia has been employed as a model of oxidative stress imitating acute respiratory distress syndrome. Under hyperoxic conditions, overloading quantities of reactive oxygen species (ROS) are generated in both lung epithelial and endothelial cells, leading to ALI. Some NADPH oxidase (NOX) family enzymes are responsible for hyperoxia-induced ROS generation in lung epithelial and endothelial cells. However, the molecular mechanisms of ROS production in type II alveolar epithelial cells (AECs) and ALI induced by hyperoxia are poorly understood. Results: In this study, we show that dual oxidase 2 (DUOX2) is a key NOX...

11. Hyperoxia Inhibits Nitric Oxide Treatment Effects in Alveolar Epithelial Cells via Effects on L-Type Amino Acid Transporter-1 - Brahmajothi, Mulugu V.; Tinch, Brian T.; Wempe, Michael F.; Endou, Hitoshi; Auten, Richard L.
Aims: The aims of this study were to determine hyperoxia effects on S-nitrosothiol (SNO) accumulation and L-type amino acid transporter 1 (LAT1) expression/function in alveolar epithelium and to determine whether hyperoxia impairs exogenous nitric oxide (NO) treatment effects in alveolar epithelium through effects on LAT1 expression and/or function. Results: SNO accumulation in vitro and in vivo after NO treatment was dependent on the LAT1 system transport. Hyperoxia (60% or 90%) impaired NO effects on SNO accumulation and soluble guanylyl cyclase activation in proportion to the magnitude of hyperoxia and the duration of exposure, up to 12 h, in type I-like (R3/1)...

12. Mitochondrial Respiratory Supercomplex Association Limits Production of Reactive Oxygen Species from Complex I - Maranzana, Evelina; Barbero, Giovanna; Falasca, Anna Ida; Lenaz, Giorgio; Genova, Maria Luisa
Aims: The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with...

13. Structural and Functional Characterization of ScsC, a Periplasmic Thioredoxin-Like Protein from Salmonella enterica Serovar Typhimurium - Shepherd, Mark; Heras, Begoña; Achard, Maud E. S.; King, Gordon J.; Argente, M. Pilar; Kurth, Fabian; Taylor, Samantha L.; Howard, Mark J.; King, Nathan P.; Schembri, Mark A.; McEwan, Alastair G.
Aims: The prototypical protein disulfide bond (Dsb) formation and protein refolding pathways in the bacterial periplasm involving Dsb proteins have been most comprehensively defined in Escherichia coli. However, genomic analysis has revealed several distinct Dsb-like systems in bacteria, including the pathogen Salmonella enterica serovar Typhimurium. This includes the scsABCD locus, which encodes a system that has been shown via genetic analysis to confer copper tolerance, but whose biochemical properties at the protein level are not defined. The aim of this study was to provide functional insights into the soluble ScsC protein through structural, biochemical, and genetic analyses. Results: Here we...

14. Conformational Change of Mitochondrial Complex I Increases ROS Sensitivity During Ischemia - Gorenkova, Natalia; Robinson, Emma; Grieve, David J.; Galkin, Alexander
Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS. Results: We found that in the heart, t½ of complex I deactivation during ischemia was 10 min, and that reperfusion...

15. Thioredoxins, Glutaredoxins, and Peroxiredoxins—Molecular Mechanisms and Health Significance: from Cofactors to Antioxidants to Redox Signaling - Hanschmann, Eva-Maria; Godoy, José Rodrigo; Berndt, Carsten; Hudemann, Christoph; Lillig, Christopher Horst
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and “antioxidants”. Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily...

16. Frataxin Deficiency Leads to Defects in Expression of Antioxidants and Nrf2 Expression in Dorsal Root Ganglia of the Friedreich's Ataxia YG8R Mouse Model - Shan, Yuxi; Schoenfeld, Robert A.; Hayashi, Genki; Napoli, Eleonora; Akiyama, Tasuku; Iodi Carstens, Mirela; Carstens, Earl E.; Pook, Mark A.; Cortopassi, Gino A.
Aims: Oxidative stress is thought to be involved in Friedreich's ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease. Results: YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene...

17. Regulation of SIRT1 by Oxidative Stress-Responsive miRNAs and a Systematic Approach to Identify Its Role in the Endothelium - Chen, Zhen; Shentu, Tzu-Pin; Wen, Liang; Johnson, David A.; Shyy, John Y.-J.
Significance: Oxidative stress is a common denominator of various risk factors contributing to endothelial dysfunction and vascular diseases. Accumulated evidence suggests that sirtuin 1 (SIRT1) expression and/or activity is impaired by supraphysiological levels of oxidative stress, which in turn disrupts endothelial homeostasis. Recent Advances: Several microRNAs (miRNAs) are induced by oxidative stress and termed as oxidative stress-responsive miRNAs. They may play a role linking the imbalanced redox state with dysregulated SIRT1. Critical Issues: This review summarizes recent findings on oxidative stress-responsive miRNAs and their involvement in SIRT1 regulation. Because of the unique characteristics of miRNAs, research in this new area...

18. SirT1 Regulation of Antioxidant Genes Is Dependent on the Formation of a FoxO3a/PGC-1α Complex - Olmos, Yolanda; Sánchez-Gómez, Francisco J.; Wild, Brigitte; García-Quintans, Nieves; Cabezudo, Sofía; Lamas, Santiago; Monsalve, María
SirT1 is a class III histone deacetylase that has been implicated in metabolic and reactive oxygen species control. In the vasculature it has been shown to decrease endothelial superoxide production, prevent endothelial dysfunction and atherosclerosis. However, the mechanisms that mediate SirT1 antioxidant functions remain to be characterized. The transcription factor FoxO3a and the transcriptional coactivator peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) have been shown to induce the expression of antioxidant genes and to be deacetylated by SirT1. Aims: Here we investigated SirT1 regulation of antioxidant genes and the roles played by FoxO3a and PGC-1α in this regulation. Results: We...

19. Is Myeloperoxidase a Key Component in the ROS-Induced Vascular Damage Related to Nephropathy in Type 2 Diabetes? - Rovira-Llopis, Susana; Rocha, Milagros; Falcon, Rosa; de Pablo, Carmen; Alvarez, Angeles; Jover, Ana; Hernandez-Mijares, Antonio; Victor, Victor M.
It is still unclear whether microvascular complications of type 2 diabetes correlate with leukocyte-endothelium interactions and/or myeloperoxidase (MPO) levels. In the present study, we found that serum levels of glucose, the rate of ROS and MPO concentration were higher in type 2 diabetic patients. Patients with nephropathy (39.6%) presented higher MPO levels that correlate positively with the albumin/creatinine ratio (r=0.59, p<0.05). In addition, nephropatic patients showed increased leukocyte-endothelium interactions due to an undermining of polymorphonuclear leukocytes (PMN) rolling velocity and increased rolling flux and adhesion, which was accompanied by a rise in levels of the proinflammatory cytokine tumour necrosis factor...

20. Tyrosine Kinase Signal Modulation: A Matter of H2O2 Membrane Permeability? - Bertolotti, Milena; Bestetti, Stefano; García-Manteiga, Jose M.; Medraño-Fernandez, Iria; Dal Mas, Andrea; Malosio, Maria Luisa; Sitia, Roberto
H2O2 produced by extracellular NADPH oxidases regulates tyrosine kinase signaling inhibiting phosphatases. How does it cross the membrane to reach its cytosolic targets? Silencing aquaporin-8 (AQP8), but not AQP3 or AQP4, inhibited H2O2 entry into HeLa cells. Re-expression of AQP8 with silencing-resistant vectors rescued H2O2 transport, whereas a C173A-AQP8 mutant failed to do so. Lowering AQP8 levels affected H2O2 entry into the endoplasmic reticulum, but not into mitochondria. AQP8 silencing also inhibited the H2O2 spikes and phosphorylation of downstream proteins induced by epidermal growth factor. These observations lead to the hypothesis that H2O2 does not freely diffuse across the plasma...

Página de resultados:

Busque un recurso