Sunday, May 29, 2016



Soy un nuevo usuario

Olvidé mi contraseña

Entrada usuarios

Lógica Matemáticas Astronomía y Astrofísica Física Química Ciencias de la Vida
Ciencias de la Tierra y Espacio Ciencias Agrarias Ciencias Médicas Ciencias Tecnológicas Antropología Demografía
Ciencias Económicas Geografía Historia Ciencias Jurídicas y Derecho Lingüística Pedagogía
Ciencia Política Psicología Artes y Letras Sociología Ética Filosofía

rss_1.0 Recursos de colección

PubMed Central (PMC3 - NLM DTD) (2,928,117 recursos)
Archive of life sciences journal literature at the U.S. National Institutes of Health (NIH), developed and managed by NIH's National Center for Biotechnology Information (NCBI) in the National Library of Medicine (NLM).

Antioxidants & Redox Signaling

Mostrando recursos 1 - 20 de 942

1. Autophagy Attenuates Noise-Induced Hearing Loss by Reducing Oxidative Stress - Yuan, Hu; Wang, Xianren; Hill, Kayla; Chen, Jun; Lemasters, John; Yang, Shi-Ming; Sha, Su-Hua

2. HJV and HFE Play Distinct Roles in Regulating Hepcidin - Wu, Qian; Wang, Hao; An, Peng; Tao, Yunlong; Deng, Jiali; Zhang, Zhuzhen; Shen, Yuanyuan; Chen, Caiyong; Min, Junxia; Wang, Fudi

3. Mitochondrial Protein Quality Control: The Mechanisms Guarding Mitochondrial Health - Bohovych, Iryna; Chan, Sherine S.L.; Khalimonchuk, Oleh

4. Beyond Mitophagy: Cytosolic PINK1 as a Messenger of Mitochondrial Health - Steer, Erin K.; Dail, Michelle K.; Chu, Charleen T.

5. Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer - Kumar, Surinder; Lombard, David B.

6. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation - Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng; Pan, Ying; Huang, Jun-Jian; Kong, Ling-Dong
Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal...

7. Methionine Sulfoxide Reductase A Negatively Controls Microglia-Mediated Neuroinflammation via Inhibiting ROS/MAPKs/NF-κB Signaling Pathways Through a Catalytic Antioxidant Function - Fan, Hua; Wu, Peng-Fei; Zhang, Ling; Hu, Zhuang-Li; Wang, Wen; Guan, Xin-Lei; Luo, Han; Ni, Ming; Yang, Jing-Wen; Li, Ming-Xing; Chen, Jian-Guo; Wang, Fang
Aims: Oxidative burst is one of the earliest biochemical events in the inflammatory activation of microglia. Here, we investigated the potential role of methionine sulfoxide reductase A (MsrA), a key antioxidant enzyme, in the control of microglia-mediated neuroinflammation. Results: MsrA was detected in rat microglia and its expression was upregulated on microglial activation. Silencing of MsrA exacerbated lipopolysaccharide (LPS)-induced activation of microglia and the production of inflammatory markers, indicating that MsrA may function as an endogenous protective mechanism for limiting uncontrolled neuroinflammation. Application of exogenous MsrA by transducing Tat-rMsrA fusion protein into microglia attenuated LPS-induced neuroinflammatory events, which was indicated...

8. CNC-bZIP Protein Nrf1-Dependent Regulation of Glucose-Stimulated Insulin Secretion - Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo
Aims: The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Results: Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release...

9. ATF3 Protects Pulmonary Resident Cells from Acute and Ventilator-Induced Lung Injury by Preventing Nrf2 Degradation - Shan, Yuexin; Akram, Ali; Amatullah, Hajera; Zhou, Dun Yuan; Gali, Patricia L.; Maron-Gutierrez, Tatiana; González-López, Adrian; Zhou, Louis; Rocco, Patricia R.M.; Hwang, David; Albaiceta, Guillermo M.; Haitsma, Jack J.; dos Santos, Claudia C.

10. Is SOD2 Ala16Val Polymorphism Associated with Migraine with Aura Phenotype? - Palmirotta, Raffaele; Barbanti, Piero; De Marchis, Maria Laura; Egeo, Gabriella; Aurilia, Cinzia; Fofi, Luisa; Ialongo, Cristiano; Valente, Maria Giovanna; Ferroni, Patrizia; Della-Morte, David; Guadagni, Fiorella

11. Activation of a Novel c-Myc-miR27-Prohibitin 1 Circuitry in Cholestatic Liver Injury Inhibits Glutathione Synthesis in Mice - Yang, Heping; Li, Tony W.H.; Zhou, Yu; Peng, Hui; Liu, Ting; Zandi, Ebrahim; Martínez-Chantar, María Luz; Mato, José M.; Lu, Shelly C.

12. The Angiotensin-Converting Enzyme 2/Angiotensin (1–7)/Mas Axis Protects Against Lung Fibroblast Migration and Lung Fibrosis by Inhibiting the NOX4-Derived ROS-Mediated RhoA/Rho Kinase Pathway - Meng, Ying; Li, Ting; Zhou, Gao-su; Chen, Yan; Yu, Chang-Hui; Pang, Miao-Xia; Li, Wei; Li, Yang; Zhang, Wen-Yong; Li, Xu

13. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction - Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.; Limoli, Charles L.
Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal...

14. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo - Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.; Aldunate, Rebeca
Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with...

15. Peroxiredoxin II Negatively Regulates Lipopolysaccharide-Induced Osteoclast Formation and Bone Loss via JNK and STAT3 - Park, Hyojung; Noh, A Long Sae Mi; Kang, Ju-Hee; Sim, Jung-Sun; Lee, Dong-Seok; Yim, Mijung
Aims: Lipopolysaccharide (LPS) is considered a prominent pathogenic factor in inflammatory bone diseases. LPS challenge contributes to the production of reactive oxygen species (ROS) in diverse inflammatory diseases. However, its mechanism remains to be clarified in bone. Thus, we investigated the critical mechanism of ROS in LPS-induced osteoclastogenesis and bone loss. Results: Antioxidant prevented LPS-induced osteoclast formation via inhibition of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and c-Fos expression in preosteoclasts. Moreover, LPS-induced osteoclast formation via ROS was attenuated by treatment with c-Jun N-terminal protein kinase (JNK) inhibitor. Interestingly, LPS also activated signal transducer and activator of transcription...

16. The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells - Rodrigues-Diez, Raúl R.; Garcia-Redondo, Ana Belen; Orejudo, Macarena; Rodrigues-Diez, Raquel; Briones, Ana Maria; Bosch-Panadero, Enrique; Kery, Gyorgy; Pato, Janos; Ortiz, Alberto; Salaices, Mercedes; Egido, Jesus; Ruiz-Ortega, Marta
Aims: Connective tissue growth factor (CTGF/CCN2) is a developmental gene upregulated in pathological conditions, including cardiovascular diseases, whose product is a matricellular protein that can be degraded to biologically active fragments. Among them, the C-terminal module IV [CCN2(IV)] regulates many cellular functions, but there are no data about redox process. Therefore, we investigated whether CCN2(IV) through redox signaling regulates vascular responses. Results: CCN2(IV) increased superoxide anion (O2•−) production in murine aorta (ex vivo and in vivo) and in cultured vascular smooth muscle cells (VSMCs). In isolated murine aorta, CCN2(IV), via O2•−, increased phenylephrine-induced vascular contraction. CCN2(IV) in vivo regulated several...

17. Targeting Neddylation Pathways to Inactivate Cullin-RING Ligases for Anticancer Therapy - Zhao, Yongchao; Morgan, Meredith A.; Sun, Yi

18. Targeting the Ubiquitin-Proteasome System in Heart Disease: The Basis for New Therapeutic Strategies - Drews, Oliver; Taegtmeyer, Heinrich

19. Characterizing the Dynamics of Proteasome Complexes by Proteomics Approaches - Kaake, Robyn M.; Kao, Athit; Yu, Clinton; Huang, Lan

20. Reactive Oxygen Species Deficiency Induces Autoimmunity with Type 1 Interferon Signature - Kelkka, Tiina; Kienhöfer, Deborah; Hoffmann, Markus; Linja, Marjo; Wing, Kajsa; Sareila, Outi; Hultqvist, Malin; Laajala, Essi; Chen, Zhi; Vasconcelos, Júlia; Neves, Esmeralda; Guedes, Margarida; Marques, Laura; Krönke, Gerhard; Helminen, Merja; Kainulainen, Leena; Olofsson, Peter; Jalkanen, Sirpa; Lahesmaa, Riitta; Souto-Carneiro, M. Margarida; Holmdahl, Rikard
Aims: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the phagocyte reactive oxygen species (ROS)–producing NOX2 enzyme complex and characterized by recurrent infections associated with hyperinflammatory and autoimmune manifestations. A translational, comparative analysis of CGD patients and the corresponding ROS-deficient Ncf1m1J mutated mouse model was performed to reveal the molecular pathways operating in NOX2 complex deficient inflammation. Results: A prominent type I interferon (IFN) response signature that was accompanied by elevated autoantibody levels was identified in both mice and humans lacking functional NOX2 complex. To further underline the systemic lupus erythematosus (SLE)-related autoimmune process, we show...

Página de resultados:

Busque un recurso